Motivation: smoothness

- In many applications we need smooth shapes
 - that is, without discontinuities
- So far we can make
 - things with corners (lines, squares, triangles, …)
 - circles and ellipses (only get you so far!)

Classical approach

- Pencil-and-paper draftsmen also needed smooth curves
- Origin of “spline”: strip of flexible metal
 - held in place by pegs or weights to constrain shape
 - traced to produce smooth contour

Translating into usable math

- Smoothness
 - in drafting spline, comes from physical curvature minimization
 - in CG spline, comes from choosing smooth functions
 - usually low-order polynomials
- Control
 - in drafting spline, comes from fixed pegs
 - in CG spline, comes from user-specified control points
Defining spline curves

• At the most general they are parametric curves
 \[S = \{ \mathbf{p}(t) \mid t \in [0, N] \} \]

• Generally \(f(t) \) is a piecewise polynomial
 – for this lecture, the discontinuities are at the integers
Defining spline curves

• Generally \(f(t) \) is a piecewise polynomial
 – for this lecture, the discontinuities are at the integers
 – e.g., a cubic spline has the following form over \([k, k+1]\):
 \[
 x(t) = a_xt^3 + b_xt^2 + c_xt + d_x \\
 y(t) = a_yt^3 + b_yt^2 + c_yt + d_y
 \]
 – Coefficients are different for every interval
Coordinate functions

2D spline

coordinate function $x(t)$

coordinate function $y(t)$

coordinate function $y(t)$
Coordinate functions

Control of spline curves
- Specified by a sequence of control points
- Shape is guided by control points (aka control polygon)
 - interpolating: passes through points
 - approximating: merely guided by points
Control of spline curves

- Specified by a sequence of control points
- Shape is guided by control points (aka control polygon)
 - interpolating: passes through points
 - approximating: merely guided by points

How splines depend on their controls

- Each coordinate is separate
 - the function $x(t)$ is determined solely by the x coordinates of the control points
 - this means 1D, 2D, 3D, ... curves are all really the same
- Spline curves are linear functions of their controls
 - moving a control point two inches to the right moves $x(t)$ twice as far as moving it by one inch
 - $x(t)$, for fixed t, is a linear combination (weighted sum) of the control points' x coordinates
 - $p(t)$, for fixed t, is a linear combination (weighted sum) of the control points

Splines as reconstruction
Splines as reconstruction

Trivial example: piecewise linear

- This spline is just a polygon
 - control points are the vertices
- But we can derive it anyway as an illustration
- Each interval will be a linear function
 - \(x(t) = at + b \)
 - constraints are values at endpoints
 - \(b = x_0 \); \(a = x_1 - x_0 \)
 - this is linear interpolation

Trivial example: piecewise linear

- Vector formulation
 \[
 x(t) = (x_1 - x_0)t + x_0 \\
 y(t) = (y_1 - y_0)t + y_0 \\
 p(t) = (p_1 - p_0)t + p_0
 \]

- Matrix formulation
 \[
 p(t) = \begin{bmatrix} t & 1 \end{bmatrix} \begin{bmatrix} -1 & 1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} p_0 \\ p_1 \end{bmatrix}
 \]

Trivial example: piecewise linear

- Basis function formulation
 - regroup expression by \(p \) rather than \(t \)
 \[
 p(t) = (p_1 - p_0)t + p_0 \\
 = (1 - t)p_0 + tp_1
 \]
 - interpretation in matrix viewpoint
 \[
 p(t) = \left(\begin{bmatrix} t & 1 \end{bmatrix} \begin{bmatrix} -1 & 1 \\ 1 & 0 \end{bmatrix} \right) \begin{bmatrix} p_0 \\ p_1 \end{bmatrix}
 \]
Trivial example: piecewise linear

- Vector blending formulation: “average of points”
 - blending functions: contribution of each point as t changes

- Basis function formulation: “function times point”
 - basis functions: contribution of each point as t changes
 - can think of them as blending functions glued together
 - this is just like a reconstruction filter!

Seeing the basis functions

- Basis functions of a spline are revealed by how the curve changes in response to a change in one control
 - to get a graph of the basis function, start with the curve laid out in a straight, constant-speed line
 - what are $x(t)$ and $y(t)$?
 - then move one control straight up
Seeing the basis functions

- Basis functions of a spline are revealed by how the curve changes in response to a change in one control
 - to get a graph of the basis function, start with the curve laid out in a straight, constant-speed line
 - what are \(x(t) \) and \(y(t) \)?
 - then move one control straight up

Hermite splines

- Less trivial example
- Form of curve: piecewise cubic
- Constraints: endpoints and tangents (derivatives)

\[
\begin{align*}
 x(t) &= at^3 + bt^2 + ct + d \\
 x'(t) &= 3at^2 + 2bt + c \\
 x(0) &= x_0 = d \\
 x(1) &= x_1 = a + b + c + d \\
 x'(0) &= x'_0 = c \\
 x'(1) &= x'_1 = 3a + 2b + c \\
\end{align*}
\]

Seeing the basis functions

- Basis functions of a spline are revealed by how the curve changes in response to a change in one control
 - to get a graph of the basis function, start with the curve laid out in a straight, constant-speed line
 - what are \(x(t) \) and \(y(t) \)?
 - then move one control straight up

Hermite splines

- Solve constraints to find coefficients

\[
\begin{align*}
 x(t) &= at^3 + bt^2 + ct + d \\
 x'(t) &= 3at^2 + 2bt + c \\
 x(0) &= x_0 = d \\
 x(1) &= x_1 = a + b + c + d \\
 x'(0) &= x'_0 = c \\
 x'(1) &= x'_1 = 3a + 2b + c \\
\end{align*}
\]

Hermite splines

- Solve constraints to find coefficients

\[
\begin{align*}
 x(t) &= at^3 + bt^2 + ct + d \\
 x'(t) &= 3at^2 + 2bt + c \\
 x(0) &= x_0 = d \\
 x(1) &= x_1 = a + b + c + d \\
 x'(0) &= x'_0 = c \\
 x'(1) &= x'_1 = 3a + 2b + c \\
\end{align*}
\]
Hermite splines

- Matrix form is much simpler

\[p(t) = \begin{bmatrix} t^3 & t^2 & t & 1 \end{bmatrix} \begin{bmatrix} 2 & -2 & 1 & 1 \\ -3 & 3 & -2 & -1 \\ 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} p_0 \\ p_1 \\ v_0 \\ v_1 \end{bmatrix} \]

- coefficients = rows
- basis functions = columns
 - note \(p \) columns sum to \([0 \ 0 \ 1]^T\)

Longer Hermite splines

- Can only do so much with one Hermite spline
- Can use these splines as segments of a longer curve
 - curve from \(t = 0 \) to \(t = 1 \) defined by first segment
 - curve from \(t = 1 \) to \(t = 2 \) defined by second segment
- To avoid discontinuity, match derivatives at junctions
 - this produces a \(C^1 \) curve

Hermite splines

- Hermite blending functions

Hermite splines

- Hermite basis functions
Hermite splines

- Hermite basis functions

Continuity

- Smoothness can be described by degree of continuity
 - zero-order (G^0): position matches from both sides
 - first-order (G^1): tangent also matches from both sides
 - second-order (G^2): curvature also matches from both sides
 - G^n vs. C^n

Continuity

- Parametric continuity (C)
 - is continuity of coordinate functions, e.g., $x(t)$, $y(t)$, $z(t)$
- Geometric continuity (G)
 - is continuity of the geometric curve itself
- Neither form of continuity is guaranteed by the other
 - Can be C^1 but not G^1 when $p(t)$ comes to a halt (next slide)
 - Can be G^1 but not C^1 when the tangent vector changes length abruptly

Geometric vs. parametric continuity
Continuity

A curve is said to be C\(^n\) continuous if \(p(t)\) is continuous, and all derivatives of \(p(t)\) up to and including degree \(n\) have the same direction and magnitude:

\[
\lim_{x \to t_-} p^{(m)}(x) = \lim_{x \to t_+} p^{(m)}(x), \quad m = 0 \ldots n
\]

\(G^n\) continuity is like \(C^n\) but only requires the derivatives to have the same direction:

\[
\lim_{x \to t_-} p^{(n)}(x) = k \lim_{x \to t_+} p^{(n)}(x), \quad \text{for some } k > 0
\]

Alternately, a curve is \(G^n\) continuous if it can be reparameterized to be \(C^n\) continuous

- i.e., there exists \(\tau = a(\tau)\), such that \(q(\tau) = p(a(\tau))\) is \(C^n\) continuous

Control

- Local control
 - changing control point only affects a limited part of spline
 - without this, splines are very difficult to use
 - many likely formulations lack this
 - polynomial fits
 - natural cubic spline (e.g., see [Cheney and Kincaid])
 - Continuous \(p, p^{(1)}, p^{(2)}\), with \(p^{(2)} = 0\) at endpoints
 - Global tridiagonal solve for coefficients
Control

- Convex hull property
 - convex hull = smallest convex region containing points
 - think of a rubber band around some pins
 - some splines stay inside convex hull of control points
 - simplifies clipping, culling, picking, etc.

Affine invariance

- Transforming the control points is the same as transforming the curve
 - true for all commonly used splines
 - extremely convenient in practice…
Matrix form of spline

\[p(t) = at^3 + bt^2 + ct + d \]

\[
\begin{bmatrix}
 t^3 & t^2 & t & 1
\end{bmatrix}
\begin{bmatrix}
 x & x & x & x \\
 x & x & x & x \\
 x & x & x & x \\
 x & x & x & x
\end{bmatrix}
\begin{bmatrix}
p_0 \\
p_1 \\
p_2 \\
p_3
\end{bmatrix}
\]

\[p(t) = b_0(t)p_0 + b_1(t)p_1 + b_2(t)p_2 + b_3(t)p_3 \]

Hermite splines

- Constraints are endpoints and endpoint tangents

\[p(t) = \begin{bmatrix} t^3 & t^2 & t & 1 \end{bmatrix} \begin{bmatrix} 2 & -2 & 1 & 1 \\ -3 & 3 & -2 & -1 \\ 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} p_0 \\ p_1 \\ v_0 \\ v_1 \end{bmatrix} \]
Affine invariance

• Basis functions associated with points should always sum to 1

\[p(t) = b_0 p_0 + b_1 p_1 + b_2 v_0 + b_3 v_1 \]
\[p'(t) = b_0 (p_0 + u) + b_1 (p_1 + u) + b_2 v_0 + b_3 v_1
= b_0 p_0 + b_1 p_1 + b_2 v_0 + b_3 v_1 + (b_0 + b_1)u
= p(t) + u \]
Hermite to Bézier

- Mixture of points and vectors is awkward
- Specify tangents as differences of points

- note derivative is defined as 3 times offset
 - reason is illustrated by linear case

\[
\begin{align*}
p_0 &= q_0 \\
p_1 &= q_3 \\
v_0 &= 3(q_1 - q_0) \\
v_1 &= 3(q_3 - q_2)
\end{align*}
\]

\[
\begin{bmatrix}
p_0 \\
p_1 \\
v_0 \\
v_1
\end{bmatrix} =
\begin{bmatrix}
1 & 0 & 0 & 0 & q_0 \\
0 & 0 & 0 & 1 & q_1 \\
-3 & 3 & 0 & 0 & q_2 \\
0 & 0 & -3 & 3 & q_3
\end{bmatrix}
\]
Hermite to Bézier

\[p_0 = q_0 \]
\[p_1 = q_3 \]
\[v_0 = 3(q_1 - q_0) \]
\[v_1 = 3(q_3 - q_2) \]

\[
\begin{bmatrix}
 2 & -2 & 1 & 1 \\
 -3 & 3 & -2 & -1 \\
 0 & 0 & 1 & 0 \\
 1 & 0 & 0 & 0
\end{bmatrix}
\begin{bmatrix}
 q_0 \\
 q_1 \\
 q_2 \\
 q_3
\end{bmatrix}
\]

Bézier basis

\[
p(t) = \begin{bmatrix} t^3 & t^2 & t & 1 \end{bmatrix}
\begin{bmatrix}
 -1 & 3 & -3 & 1 \\
 3 & -6 & 3 & 0 \\
 -3 & 3 & 0 & 0 \\
 1 & 0 & 0 & 0
\end{bmatrix}
\begin{bmatrix}
 p_0 \\
 p_1 \\
 p_2 \\
 p_3
\end{bmatrix}
\]

– note that these are the Bernstein polynomials

\[C(n,k) t^k (1-t)^{n-k} \]

and that defines Bézier curves for any degree
Convex hull

- If basis functions are all positive, the spline has the convex hull property
 - we’re still requiring them to sum to 1

 - if any basis function is ever negative, no convex hull prop.
 - proof: take the other three points at the same place

Chaining spline segments

- Hermite curves are convenient because they can be made long easily
- Bézier curves are convenient because their controls are all points and they have nice properties
 - and they interpolate every 4th point, which is a little odd
- We derived Bézier from Hermite by defining tangents from control points
 - a similar construction leads to the interpolating Catmull-Rom spline

Chaining Bézier splines

- No continuity built in
- Achieve C^1 using collinear control points

Chaining Bézier splines

- No continuity built in
- Achieve C^1 using collinear control points
Subdivision

- A Bézier spline segment can be split into a two-segment curve:

 - de Casteljau’s algorithm
 - also works for arbitrary t

Cubic Bézier splines

- Very widely used type, especially in 2D
 - e.g. it is a primitive in PostScript/PDF
- Can represent C^1 and/or G^1 curves with corners
- Can easily add points at any position
- Illustrator demo

Hermite to Catmull-Rom

- Have not yet seen any interpolating splines
- Would like to define tangents automatically
 - use adjacent control points
 - end tangents: extra points or zero
Hermite to Catmull-Rom

- Have not yet seen any interpolating splines
- Would like to define tangents automatically
 - use adjacent control points

- end tangents: extra points or zero

Hermite to Catmull-Rom

- Have not yet seen any interpolating splines
- Would like to define tangents automatically
 - use adjacent control points

- end tangents: extra points or zero
Hermite to Catmull-Rom

- Tangents are \((p_k + 1 - p_{k-1}) / 2\)
 - scaling based on same argument about collinear case
 \[p_0 = q_k \]
 \[p_1 = q_k + 1 \]
 \[v_0 = 0.5(q_{k+1} - q_{k-1}) \]
 \[v_1 = 0.5(q_{k+2} - q_k) \]

\[
\begin{bmatrix}
 a \\
 b \\
 c \\
 d
\end{bmatrix} = \begin{bmatrix}
 2 & -2 & 1 & 1 \\
 -3 & 3 & -2 & -1 \\
 0 & 0 & 1 & 0 \\
 1 & 0 & 0 & 0
\end{bmatrix} \begin{bmatrix}
 0 & 1 & 0 & 0 \\
 0 & 0 & 1 & 0 \\
 -.5 & 0 & .5 & 0 \\
 0 & -.5 & 0 & .5
\end{bmatrix} \begin{bmatrix}
 q_k^{k-1} \\
 q_k \\
 q_{k+1} \\
 q_{k+2}
\end{bmatrix}
\]

Catmull-Rom basis

- Our first example of an interpolating spline
- Like Bézier, equivalent to Hermite
 - in fact, all splines of this form are equivalent
- First example of a spline based on just a control point sequence
- Does not have convex hull property
B-splines

- We may want more continuity than C^1
- We may not need an interpolating spline
- B-splines are a clean, flexible way of making long splines with arbitrary order of continuity
- Various ways to think of construction
 - a simple one is convolution
 - relationship to sampling and reconstruction

Cubic B-spline basis

Deriving the B-Spline

- Approached from a different tack than Hermite-style constraints
 - Want a cubic spline; therefore 4 active control points
 - Want C^2 continuity
 - Turns out that is enough to determine everything
Efficient construction of any B-spline

- B-splines defined for all orders
 - order d: degree $d - 1$
 - order d: d points contribute to value
- One definition: Cox-deBoor recurrence

$$b_1 = \begin{cases} 1 & 0 \leq u < 1 \\ 0 & \text{otherwise} \end{cases}$$

$$b_d = \frac{t}{d-1} b_{d-1}(t) + \frac{d-t}{d-1} b_{d-1}(t-1)$$

B-spline construction, alternate view

- Recurrence
 - ramp up/down
- Convolution
 - smoothing of basis fn
 - smoothing of curve

Cubic B-spline matrix

$$p(t) = \begin{bmatrix} t^3 & t^2 & t & 1 \end{bmatrix} \cdot \frac{1}{6} \begin{bmatrix} -1 & 3 & -3 & 1 \\ 3 & -6 & 3 & 0 \\ -3 & 0 & 3 & 0 \\ 1 & 4 & 1 & 0 \end{bmatrix} \begin{bmatrix} p_{k-1} \\ p_k \\ p_{k+1} \\ p_{k+2} \end{bmatrix}$$

Other types of B-splines

- Nonuniform B-splines
 - discontinuities not evenly spaced
 - allows control over continuity or interpolation at certain points
 - e.g. interpolate endpoints (commonly used case)
- Nonuniform Rational B-splines (NURBS)
 - ratios of nonuniform B-splines: $x(t) / w(t); y(t) / w(t)$
 - key properties:
 - invariance under perspective as well as affine
 - ability to represent conic sections exactly
Converting spline representations

- All the splines we have seen so far are equivalent
 - all represented by geometry matrices
 \[p_S(t) = T(t)M_SP_S \]
- where \(S \) represents the type of spline
- therefore the control points may be transformed from one type to another using matrix multiplication
 \[P_1 = M_1^{-1}M_2P_2 \]
 \[p_1(t) = T(t)M_1(M_1^{-1}M_2P_2) = T(t)M_2P_2 = p_2(t) \]

Evaluating splines for display

- Need to generate a list of line segments to draw
 - generate efficiently
 - use as few as possible
 - guarantee approximation accuracy
- Approaches
 - recursive subdivision (easy to do adaptively)
 - uniform sampling (easy to do efficiently)

Evaluating by subdivision

- Recursively split spline
 - stop when polygon is within epsilon of curve
- Termination criteria
 - distance between control points
 - distance of control points from line

Evaluating by subdivision

- Recursively split spline
 - stop when polygon is within epsilon of curve
- Termination criteria
 - distance between control points
 - distance of control points from line
Evaluating with uniform spacing

- Forward differencing
 - efficiently generate points for uniformly spaced t values
 - evaluate polynomials using repeated differences