A Little Background

- **Ray casting**
 - Process of shooting rays into scene to get pixel colors
 - Nonrecursive, i.e., no interreflections
 - Origin: Arthur Appel, 1968 (earlier work by others for nonrendering)

- **Ray tracing**
 - Process of shooting rays into scene and resolving reflections and refractions to get pixel colors
 - Recursive by nature
 - Origin: Turner Whitted, 1978

Motivation

 - http://www.youtube.com/watch?v=WV4qXzH664o

The number of reflections a ray can take and how it is affected each time it encounters a surface is all controlled via software settings during ray tracing. Here, each ray was allowed to reflect up to 16 times. Multiple "reflections of reflections" can thus be seen.

Motivation

“A render of a few spheres, created in Rhinoceros 3D and rendered using V-Ray. This render features: Depth of field, hexagonal aperture (and consequently hexagonal bokeh), Fresnel reflections, area lights, global illumination, diffuse interreflection, ambient occlusion etc.”

[Mimigu 2009 (Wikipedia)]

Recursive raytracing of a sphere, which incorporates the effects of diffuse interreflection, depth-of-field, ambient occlusion, area light sources, and Fresnel reflection.”

[Tim Babb, 2008 (Wikipedia)]

Motivation

“Recursive raytracing of a sphere, which incorporates the effects of diffuse interreflection, depth-of-field, ambient occlusion, area light sources, and Fresnel reflection.”

[Tim Babb, 2008 (Wikipedia)]

Motivation

Motivation

“A render of a few spheres, created in Rhinoceros 3D and rendered using V-Ray. This render features: Depth of field, hexagonal aperture (and consequently hexagonal bokeh), Fresnel reflections, area lights, global illumination, diffuse interreflection, ambient occlusion etc.”

[Mimigu 2009 (Wikipedia)]

“This image was created by Gilles Tran with POV-Ray 3.6 using Radiosity.”

[Tim Babb, 2008 (Wikipedia)]
Ray tracing idea

![Ray tracing idea diagram](image1)

Ray tracing algorithm

```plaintext
for each pixel {
    compute viewing ray
    intersect ray with scene
    compute illumination at visible point
    put result into image
}
```

![Ray tracing algorithm diagram](image2)

Generating eye rays

- Use window analogy directly

![Generating eye rays diagram](image3)

Generating eye rays

- Use window analogy directly

![Generating eye rays diagram](image4)
Vector math review

- Vectors and points
- Vector operations
 - addition
 - scalar product
- More products
 - dot product
 - cross product
- Bases and orthogonality

Generating eye rays—orthographic

- Just need to compute the view plane point s:

 \[p = s; \quad d = d_v \]
 \[r(t) = p + td \]

 - but where exactly is the view rectangle?

Generating eye rays—perspective

- View rectangle needs to be away from viewpoint
- Distance is important: “focal length” of camera
 - still use camera frame but position view rect away from viewpoint
 - ray origin always e
 - ray direction now controlled by s
Generating eye rays—perspective

- Compute \(s \) in the same way; just subtract \(dw \)
 - coordinates of \(s \) are \((u, v, -d)\)
 \[
 s = e + uw + vv - dw
 \]
 \[p = e; \quad d = s - e\]
 \[r(t) = p + td\]

Pixel-to-image mapping

- One last detail: \((u, v)\) coords of a pixel
 \[
 u = l + (r - l)(i + 0.5)/n_x
 \]
 \[
 v = b + (t - b)(j + 0.5)/n_y
 \]

Ray intersection

Ray: a half line

- Standard representation: point \(p \) and direction \(d \)
 \[r(t) = p + td\]
 - this is a parametric equation for the line
 - lets us directly generate the points on the line
 - if we restrict to \(t > 0 \) then we have a ray
 - note replacing \(d \) with \(ad \) doesn’t change ray (a > 0)
Ray-sphere intersection: algebraic

- Condition 1: point is on ray
 \[\mathbf{r}(t) = \mathbf{p} + t\mathbf{d} \]
- Condition 2: point is on sphere
 - assume unit sphere; see Shirley or notes for general
 \[\|\mathbf{x}\| = 1 \iff \|\mathbf{x}\|^2 = 1 \]
 \[f(\mathbf{x}) = \mathbf{x} \cdot \mathbf{x} - 1 = 0 \]
- Substitute:
 \[(\mathbf{p} + t\mathbf{d}) \cdot (\mathbf{p} + t\mathbf{d}) - 1 = 0 \]
 - this is a quadratic equation in \(t \)

Ray-box intersection

- Could intersect with 6 faces individually
- Better way: box is the intersection of 3 slabs

Ray-sphere intersection: algebraic

- Solution for \(t \) by quadratic formula:
 \[
 t = \frac{-\mathbf{d} \cdot \mathbf{p} \pm \sqrt{(\mathbf{d} \cdot \mathbf{p})^2 - (\mathbf{d} \cdot \mathbf{d})(\mathbf{p} \cdot \mathbf{p} - 1)}}{\mathbf{d} \cdot \mathbf{d}}
 \]
 - simpler form holds when \(\mathbf{d} \) is a unit vector
 but we won’t assume this in practice (reason later)
 - I’ll use the unit-vector form to make the geometric interpretation

Ray-sphere intersection: geometric

\[t_m = -\mathbf{p} \cdot \mathbf{d} \]
\[t_m^2 = \mathbf{p} \cdot \mathbf{p} - (\mathbf{p} \cdot \mathbf{d})^2 \]
\[\Delta t = \sqrt{1 - t_m^2} \]
\[= \sqrt{(\mathbf{p} \cdot \mathbf{d})^2 - \mathbf{p} \cdot \mathbf{p} + 1} \]
\[t_{0,1} = t_m \pm \Delta t = -\mathbf{p} \cdot \mathbf{d} \pm \sqrt{(\mathbf{p} \cdot \mathbf{d})^2 - \mathbf{p} \cdot \mathbf{p} + 1} \]
Ray-slab intersection

- 2D example
- 3D is the same!

\[p_x + t_{x_{\text{min}}} d_x = x_{\text{min}} \]
\[t_{x_{\text{min}}} = \frac{(x_{\text{min}} - p_x)}{d_x} \]
\[p_y + t_{y_{\text{min}}} d_y = y_{\text{min}} \]
\[t_{y_{\text{min}}} = \frac{(y_{\text{min}} - p_y)}{d_y} \]

Intersecting intersections

- Each intersection is an interval
- Want last entry point and first exit point

\[t_{\text{min}} = \max(t_{x_{\text{min}}}, t_{y_{\text{min}}}) \]
\[t_{\text{max}} = \min(t_{x_{\text{max}}}, t_{y_{\text{max}}}) \]

Ray-triangle intersection

- Condition 1: point is on ray
 \[\mathbf{r}(t) = \mathbf{p} + t \mathbf{d} \]
- Condition 2: point is on plane
 \[(\mathbf{x} - \mathbf{a}) \cdot \mathbf{n} = 0 \]
- Condition 3: point is on the inside of all three edges
- First solve 1&2 (ray–plane intersection)
 - substitute and solve for \(t \):
 \[(\mathbf{p} + t \mathbf{d} - \mathbf{a}) \cdot \mathbf{n} = 0 \]
 \[t = \frac{(\mathbf{a} - \mathbf{p}) \cdot \mathbf{n}}{\mathbf{d} \cdot \mathbf{n}} \]

Ray-triangle intersection

- In plane, triangle is the intersection of 3 half spaces
Inside-edge test

- Need outside vs. inside
- Reduce to clockwise vs. counterclockwise
 - vector of edge to vector to \(x \)
- Use cross product to decide

Ray-triangle intersection

- Alternative:
 - Compute ray-plane intersection
 - Estimate barycentric coordinates of intersection, and test if inside
 - Efficient implementation by solving 2x2 linear system
 - See text for details

Ray-triangle intersection

- Alternative:
 - Compute ray-plane intersection
 - Estimate barycentric coordinates of intersection, and test if inside
 - Efficient implementation by solving 2x2 linear system
 - See text for details

Image so far

- With eye ray generation and sphere intersection

```java
Surface s = new Sphere((0.0, 0.0, 0.0), 1.0);
for 0 <= iy < ny
  for 0 <= ix < nx {
    ray = camera.getRay(ix, iy);
    hitSurface, t = s.intersect(ray, 0, +inf)
    if hitSurface is not null
      image.set(ix, iy, white);
  }
```
Intersection against many shapes

- The basic idea is:

```java
Group.intersect (ray, tMin, tMax) {
  tBest = +inf; firstSurface = null;
  for surface in surfaceList {
    hitSurface, t = surface.intersect(ray, tMin, tBest);
    if hitSurface is not null AND t < tBest {
      tBest = t;
      firstSurface = hitSurface;
    }
  }
  return hitSurface, tBest;
}
```

- this is linear in the number of shapes
 but there are sublinear methods (acceleration structures)

Shading

- Compute light reflected toward camera
- Inputs:
 - eye direction
 - light direction
 (for each of many lights)
 - surface normal
 - surface parameters
 (color, shininess, …)

Image so far

- With eye ray generation and scene intersection

```java
for 0 <= iy < ny {
  for 0 <= ix < nx {
    ray = camera.getRay(ix, iy);
    c = scene.trace(ray, 0, +inf);
    image.set(ix, iy, c);
  }
}
```

Shading

- Light is scattered uniformly in all directions
 - the surface color is the same for all viewing directions
- Lambert’s cosine law

Diffuse reflection

Top face of cube receives a certain amount of light

Top face of 60° rotated cube intercepts half the light

In general, light per unit area is proportional to

$\cos \theta = \mathbf{l} \cdot \mathbf{n}$
Lambertian shading

- Shading independent of view direction

\[L_d = k_d \max(0, n \cdot l) \]

Diffuse shading

Diffuse shading produces a matte appearance.

Image so far

```java
Scene.trace(Ray ray, tMin, tMax) {
    surface, t = hit(ray, tMin, tMax);
    if surface is not null {
        point = ray.evaluate(t);
        normal = surface.getNormal(point);
        return surface.shade(ray, point, normal, light);
    } else return backgroundColor;
}
```

```java
Surface.shade(ray, point, normal, light) {
    v = -normalize(ray.direction);
    l = normalize(light.pos - point);
    // compute shading
}
Shadows

- Surface is only illuminated if nothing blocks its view of the light.
- With ray tracing it’s easy to check
  - just intersect a ray with the scene!

Image so far

```
Surface.shade(ray, point, normal, light) {
 shadRay = (point, light.pos - point);
 if (shadRay not blocked) {
 v = -normalize(ray.direction);
 l = normalize(light.pos - point);
 // compute shading
 }
 return black;
}
```

Shadow rounding errors

- Don’t fall victim to one of the classic blunders:

- What's going on?
  - hint: at what t does the shadow ray intersect the surface you’re shading?

Shadow rounding errors

- Solution: shadow rays start a tiny distance from the surface

- Do this by moving the start point, or by limiting the t range
Multiple lights

- Important to fill in black shadows
- Just loop over lights, add contributions
- Ambient shading
  - black shadows are not really right
  - one solution: dim light at camera
  - alternative: add a constant “ambient” color to the shading…

Image so far

```cpp
shade(ray, point, normal, lights) {
 result = ambient;
 for light in lights {
 if (shadow ray not blocked) {
 result += shading contribution;
 }
 }
 return result;
}
```

Specular shading (Blinn-Phong)

- Intensity depends on view direction
  - bright near mirror configuration

```latex
\begin{align*}
\mathbf{h} &= \text{bisector}(\mathbf{v}, \mathbf{l}) \\
&= \frac{\mathbf{v} + \mathbf{l}}{||\mathbf{v} + \mathbf{l}||} \\
L_s &= k_s I \max(0, \cos \alpha)^p \\
&= k_s I \max(0, \mathbf{n} \cdot \mathbf{h})^p
\end{align*}
```
**Phong model—plots**

- Increasing $n$ narrows the lobe

![Fig. 16.9](image) Different values of $\cos^n \alpha$ used in the Phong illumination model.

**Specular shading**

![Image](image)

**Diffuse + Phong shading**

![Image](image)

**Ambient shading**

- Shading that does not depend on anything
  - add constant color to account for disregarded illumination and fill in black shadows
  
  \[ L_a = k_a I_a \]
Putting it together

• Usually include ambient, diffuse, Phong in one model

\[ L = L_a + L_d + L_s = k_a I_a + k_d I_d \max(0, n \cdot l) + k_s I_s \max(0, n \cdot h)^p \]

• The final result is the sum over many lights

\[ L = L_a + \sum_{i=1}^{N} [(L_d)_i + (L_s)_i] \]

\[ L = k_a I_a + \sum_{i=1}^{N} [k_d I_d \max(0, n \cdot l_i) + k_s I_s \max(0, n \cdot h_i)^p] \]

Mirror reflection

• Consider perfectly shiny surface
  – there isn’t a highlight
  – instead there’s a reflection of other objects

• Can render this using recursive ray tracing
  – to find out mirror reflection color, ask what color is seen from surface point in reflection direction
  – already computing reflection direction for Phong…

• “Glazed” material has mirror reflection and diffuse

\[ L = L_a + L_d + L_m \]

  – where \( L_m \) is evaluated by tracing a new ray

LightMaterial Demo
OpenGL Tutors program by Nate Robins
http://www.xmission.com/~nate/tutors.html

Mirror reflection

• Intensity depends on view direction
  – reflects incident light from mirror direction

\[ r = v + 2((n \cdot v)n - v) = 2(n \cdot v)n - v \]
**Ray tracer architecture 101**

- You want a class called Ray
  - point and direction; evaluate(t)
  - possible: tMin, tMax

- Some things can be intersected with rays
  - individual surfaces
  - groups of surfaces (acceleration goes here)
  - the whole scene
  - make these all subclasses of Surface
  - limit the range of valid t values (e.g. shadow rays)

- Once you have the visible intersection, compute the color
  - may want to separate shading code from geometry
  - separate class: Material (each Surface holds a reference to one)
  - its job is to compute the color

**Architectural practicalities**

- Return values
  - surface intersection tends to want to return multiple values
    - t, surface or shader, normal vector, maybe surface point
    - in many programming languages (e.g. Java) this is a pain
  - typical solution: an *intersection record*
    - a class with fields for all these things
    - keep track of the intersection record for the closest intersection
    - be careful of accidental aliasing (which is very easy if you're new to Java)

- Efficiency
  - in Java the (or, a) key to being fast is to minimize creation of objects
  - what objects are created for every ray? try to find a place for them where you can reuse them.
  - Shadow rays can be cheaper (any intersection will do, don’t need closest)
  - but: “First Get it Right, Then Make it Fast”