Pipeline and Rasterization

CS4620
(Shirley & Marschner, Chapter 8)

The graphics pipeline

- The standard approach to object-order graphics
- Many versions exist
 - Software, e.g., Pixar’s REYES architecture
 - many options for quality and flexibility
 - Hardware, e.g., graphics cards in PCs
 - amazing performance: millions of triangles per frame
- We’ll focus on an abstract version of hardware pipeline
- “Pipeline” because of the many stages
 - very parallelizable
 - leads to remarkable performance of graphics cards (many times the flops of the CPU at ~1/5 the clock speed)

Primitives

- Points
- Line segments
 - and chains of connected line segments
- Triangles
- And that’s all!
 - Curves? Approximate them with chains of line segments
 - Polygons? Break them up into triangles
 - Curved regions? Approximate them with triangles
- Trend has been toward minimal primitives
 - Simple, uniform, repetitive: good for parallelism
Rasterization

- First job: enumerate the pixels covered by a primitive
 - Simple, aliased definition: pixels whose centers fall inside
- Second job: interpolate values across the primitive
 - e.g., colors computed at vertices
 - e.g., normals at vertices
 - will see applications later on

Rasterizing lines

- Define line as a rectangle
- Specify by two endpoints
- Ideal image: black inside, white outside

Point sampling

- Approximate rectangle by drawing all pixels whose centers fall within the line
- Problem: sometimes turns on adjacent pixels
Bresenham lines (midpoint alg.)

- Point sampling unit width rectangle leads to uneven line width
- Define line width parallel to pixel grid
- That is, turn on the single nearest pixel in each column
- Note that 45° lines are now thinner

Algorithms for drawing lines

- line equation: \(y = b + m \, x \)
- Simple algorithm: evaluate line equation per column
- W.l.o.g. \(x_0 < x_1 \); \(0 \leq m \leq 1 \)

\[
\text{for } x = \text{ceil}(x_0) \text{ to floor}(x_1) \\
y = b + m \times x \\
\text{output}(x, \text{round}(y))
\]

\[
y = 1.91 + 0.37 \, x
\]

Optimizing line drawing

- Multiplying and rounding is slow
- At each pixel the only options are E and NE
- \(d = m(x + 1) + b - y \)
- \(d > 0.5 \) decides between E and NE
Optimizing line drawing

- \(d = m(x + 1) + b - y \)
- Only need to update \(d \) for integer steps in \(x \) and \(y \)
- Do that with addition
- Known as “DDA” (digital differential analyzer)

Midpoint line algorithm

\[
\begin{align*}
x &= \text{ceil}(x0) \\
y &= \text{round}(m \times x + b) \\
d &= m \times (x + 1) + b - y \\
\text{while } x < \text{floor}(x1) \\
& \quad \text{if } d > 0.5 \\
& \quad \quad y += 1 \\
& \quad \quad d -= 1 \\
& \quad \quad x += 1 \\
& \quad \quad d += m \\
& \quad \text{output}(x, y)
\end{align*}
\]

Linear interpolation

- We often attach attributes to vertices
 - e.g. computed diffuse color of a hair being drawn using lines
 - want color to vary smoothly along a chain of line segments
- Recall basic definition
 - 1D: \(f(x) = (1 - \alpha) y_0 + \alpha y_1 \)
 - where \(\alpha = (x - x_0) / (x_1 - x_0) \)
- In the 2D case of a line segment, alpha is just the fraction of the distance from \((x_0, y_0)\) to \((x_1, y_1)\)
Alternate interpretation

- We are updating d and α as we step from pixel to pixel
 - d tells us how far from the line we are
 - α tells us how far along the line we are
- So d and α are coordinates in a coordinate system oriented to the line

Pixel-walk line rasterization

\[
x = \text{ceil}(x0) \\
y = \text{round}(m \times x + b) \\
d = m \times x + b - y \\
\text{while } x < \text{floor}(x1) \\
\quad \text{if } d > 0.5 \\
\quad \quad y += 1; d -= 1; \\
\quad \text{else} \\
\quad \quad x += 1; d += m; \\
\quad \text{if } -0.5 < d \leq 0.5 \\
\quad \quad \text{output}(x, y)
\]

Rasterizing triangles

- The most common case in most applications
 - with good antialiasing can be the only case
 - some systems render a line as two skinny triangles
- Triangle represented by three vertices
- Simple way to think of algorithm follows the pixel-walk interpretation of line rasterization
 - walk from pixel to pixel over (at least) the polygon’s area
 - evaluate linear functions as you go
 - use those functions to decide which pixels are inside
Rasterizing triangles

- **Input:**
 - three 2D points (the triangle’s vertices in pixel space)
 - \((x_0, y_0); (x_1, y_1); (x_2, y_2)\)
 - parameter values at each vertex
 - \(q_{00}, \ldots, q_{0n}; q_{10}, \ldots, q_{1n}; q_{20}, \ldots, q_{2n}\)
- **Output:** a list of fragments, each with
 - the integer pixel coordinates \((x, y)\)
 - interpolated parameter values \(q_0, \ldots, q_n\)

Summary

1. evaluation of linear functions on pixel grid
2. functions defined by parameter values at vertices
3. using extra parameters to determine fragment set

Incremental linear evaluation

- A linear (affine, really) function on the plane is:
 \[q(x, y) = c_xx + c_yy + c_k \]
- Linear functions are efficient to evaluate on a grid:
 \[
 \begin{align*}
 q(x + 1, y) &= c_xx + c_y(y + 1) + c_k = q(x, y) + c_x \\
 q(x, y + 1) &= c_xx + c_y(y + 1) + c_k = q(x, y) + c_y
 \end{align*}
 \]

```java
linEval(xl, xh, yl, yh, cx, cy, ck) {
    // setup
    qRow = cx * xl + cy * yl + ck;

    // traversal
    for y = yl to yh {
        qPix = qRow;
        for x = xl to xh {
            output(x, y, qPix);
            qPix += cx;
        }
        qRow += cy;
    }
}
```

c_x = .005; c_y = .005; c_k = 0

(image size 100x100)
Rasterizing triangles

- **Summary**
 1. Evaluation of linear functions on pixel grid
 2. Functions defined by parameter values at vertices
 3. Using extra parameters to determine fragment set

Defining parameter functions

- To interpolate parameters across a triangle we need to find the c_x, c_y, and c_k that define the (unique) linear function that matches the given values at all 3 vertices
 - This is 3 constraints on 3 unknown coefficients:
 - $c_x x_0 + c_y y_0 + c_k = q_0$ (each states that the function agrees with the given value at one vertex)
 - $c_x x_1 + c_y y_1 + c_k = q_1$
 - $c_x x_2 + c_y y_2 + c_k = q_2$
 - Leading to a 3x3 matrix equation for the coefficients:
 \[
 \begin{bmatrix}
 x_0 & y_0 & 1 \\
 x_1 & y_1 & 1 \\
 x_2 & y_2 & 1
 \end{bmatrix}
 \begin{bmatrix}
 c_x \\
 c_y \\
 c_k
 \end{bmatrix}
 = \begin{bmatrix}
 q_0 \\
 q_1 \\
 q_2
 \end{bmatrix}
 \] (singular iff triangle is degenerate)

Defining parameter functions

- More efficient version: shift origin to (x_0, y_0)
 \[
 q(x, y) = c_x(x - x_0) + c_y(y - y_0) + q_0 \\
 q(x_1, y_1) = c_x(x_1 - x_0) + c_y(y_1 - y_0) + q_0 = q_1 \\
 q(x_2, y_2) = c_x(x_2 - x_0) + c_y(y_2 - y_0) + q_0 = q_2
 \]
 - Now this is a 2x2 linear system (since q_0 falls out):
 \[
 \begin{bmatrix}
 (x_1 - x_0) & (y_1 - y_0) \\
 (x_2 - x_0) & (y_2 - y_0)
 \end{bmatrix}
 \begin{bmatrix}
 c_x \\
 c_y
 \end{bmatrix}
 = \begin{bmatrix}
 q_1 - q_0 \\
 q_2 - q_0
 \end{bmatrix}
 \]
 - Solve using Cramer's rule (see Shirley):
 \[
 c_x = (\Delta q_1 \Delta y_2 - \Delta q_2 \Delta y_1) / (\Delta x_1 \Delta y_2 - \Delta x_2 \Delta y_1) \\
 c_y = (\Delta q_2 \Delta x_1 - \Delta q_1 \Delta x_2) / (\Delta x_1 \Delta y_2 - \Delta x_2 \Delta y_1)
 \]

```javascript
linInterp(xl, xh, yl, yh, x0, y0, q0, x1, y1, x2, y2, q1, q2) {
  // setup
  det = (x1-x0)*(y2-y0) - (x2-x0)*(y1-y0);
  cx = ((q1-q0)*(y2-y0) - (q2-q0)*(y1-y0)) / det;
  cy = ((q2-q0)*(x1-x0) - (q1-q0)*(x2-x0)) / det;
  qRow = cx*(xl-x0) + cy*(yl-y0) + q0;

  // traversal (same as before)
  for y = yl to yh {
    qPix = qRow;
    for x = xl to xh {
      output(x, y, qPix);
      qPix += cx;
    }
    qRow += cy;
  }
}
```

Defining parameter functions

- Version with code snippet:

```javascript
linInterp(xl, xh, yl, yh, x0, y0, q0, x1, y1, x2, y2, q1, q2) {
  // setup
  det = (x1-x0)*(y2-y0) - (x2-x0)*(y1-y0);
  cx = ((q1-q0)*(y2-y0) - (q2-q0)*(y1-y0)) / det;
  cy = ((q2-q0)*(x1-x0) - (q1-q0)*(x2-x0)) / det;
  qRow = cx*(xl-x0) + cy*(yl-y0) + q0;

  // traversal (same as before)
  for y = yl to yh {
    qPix = qRow;
    for x = xl to xh {
      output(x, y, qPix);
      qPix += cx;
    }
    qRow += cy;
  }
}
```
Interpolating several parameters

```
linInterp(xl, xh, yl, yh, n, y0, q0[], x1, y1, q1[], x2, y2, q2[]) {
    // setup
    for k = 0 to n-1
        // compute cx[k], cy[k], qRow[k]
        // from q0[k], q1[k], q2[k]
    // traversal
    for y = yl to yh {
        for k = 1 to n, qPix[k] = qRow[k];
        for x = xl to xh {
            output(x, y, qPix);
            for k = 1 to n, qPix[k] += cx[k];
        }
        for k = 1 to n, qRow[k] += cy[k];
    }
}
```

Rasterizing triangles

- **Summary**
 1. evaluation of linear functions on pixel grid
 2. functions defined by parameter values at vertices
 3. using extra parameters to determine fragment set

Clipping to the triangle

- Interpolate three **barycentric coordinates** across the plane
 - each barycentric coord is 1 at one vert. and 0 at the other two
- Output fragments only when all three are > 0.

Barycentric coordinates

- A coordinate system for triangles
 - algebraic viewpoint:
 \[
 p = \alpha a + \beta b + \gamma c
 \]
 \[
 \alpha + \beta + \gamma = 1
 \]
 - geometric viewpoint (areas):
- Triangle interior test:
 \[
 \alpha > 0; \quad \beta > 0; \quad \gamma > 0
 \]
Barycentric coordinates

- A coordinate system for triangles
 - geometric viewpoint: distances
 - linear viewpoint: basis of edges
 \[
 \alpha = 1 - \beta - \gamma \\
 p = a + \beta(b - a) + \gamma(c - a)
 \]

Walking edge equations

- We need to update values of the three edge equations with single-pixel steps in \(x \) and \(y \)
- Edge equation already in form of dot product
- Components of vector are the increments

Pixel-walk (Pineda) rasterization

- Conservatively visit a superset of the pixels you want
- Interpolate linear functions
- Use those functions to determine when to emit a fragment
Rasterizing triangles

• Exercise caution with rounding and arbitrary decisions
 – need to visit these pixels once
 – but it’s important not to visit them twice!

Clipping

• Rasterizer tends to assume triangles are on screen
 – particularly problematic to have triangles crossing the plane $z = 0$
• After projection, before perspective divide
 – clip against the planes $x, y, z = 1, -1$ (6 planes)
 – primitive operation: clip triangle against axis-aligned plane

Clipping a triangle against a plane

• 4 cases, based on sidedness of vertices
 – all in (keep)
 – all out (discard)
 – one in, two out (one clipped triangle)
 – two in, one out (two clipped triangles)