3D Transformations

CS 4620 Lecture 3

Translation

\[
\begin{bmatrix}
 x' \\
 y' \\
 z'
\end{bmatrix} =
\begin{bmatrix}
 1 & 0 & 0 & t_x \\
 0 & 1 & 0 & t_y \\
 0 & 0 & 1 & t_z \\
 0 & 0 & 0 & 1
\end{bmatrix}
\begin{bmatrix}
 x \\
 y \\
 z \\
 1
\end{bmatrix}
\]

Scaling

\[
\begin{bmatrix}
 x' \\
 y' \\
 z'
\end{bmatrix} =
\begin{bmatrix}
 s_x & 0 & 0 \\
 0 & s_y & 0 \\
 0 & 0 & s_z \\
\end{bmatrix}
\begin{bmatrix}
 x \\
 y \\
 z
\end{bmatrix}
\]

Rotation about z axis

\[
\begin{bmatrix}
 x' \\
 y' \\
 z'
\end{bmatrix} =
\begin{bmatrix}
 \cos \theta & -\sin \theta & 0 & 0 \\
 \sin \theta & \cos \theta & 0 & 0 \\
 0 & 0 & 1 & 0 \\
 0 & 0 & 0 & 1
\end{bmatrix}
\begin{bmatrix}
 x \\
 y \\
 z
\end{bmatrix}
\]
Transformations in OpenGL

- Stack-based manipulation of model-view transformation, \(M \)
- \(\text{glMatrixMode} \) \((\text{GL}_\text{MODELVIEW}) \) specifies model-view matrix
- \(\text{glLoadIdentity}() \) \(M \leftarrow 4x4 \) identity
- \(\text{glTranslatef} \) \((\text{float} \ ux, \ \text{float} \ uy, \ \text{float} \ uz) \) \(M \leftarrow MT \)
- \(\text{glRotatef} \) \((\text{float} \ \theta, \ \text{float} \ ux, \ \text{float} \ uy, \ \text{float} \ uz) \) \(M \leftarrow MR \)
- \(\text{glScalef} \) \((\text{float} \ sx, \ \text{float} \ sy, \ \text{float} \ sz) \) \(M \leftarrow MS \)
- \(\text{glLoadMatrixf} \) \((\text{float}[] \ A) \) \(M \leftarrow A \) (Note: column major)
- \(\text{glMultMatrixf} \) \((\text{float}[] \ A) \) \(M \leftarrow MA \) (Note: column major)
- Manipulate matrix stack using:
 - \(\text{glPushMatrix}() \)
 - \(\text{glPopMatrix}() \)

\[
\begin{bmatrix} x' \\ y' \\ z' \\ 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & \cos \theta & -\sin \theta & 0 \\ 0 & \sin \theta & \cos \theta & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix}
\]

Rotation about \(x \) axis

\[
\begin{bmatrix} x' \\ y' \\ z' \\ 1 \end{bmatrix} = \begin{bmatrix} \cos \theta & 0 & \sin \theta & 0 \\ 0 & 1 & 0 & 0 \\ -\sin \theta & 0 & \cos \theta & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix}
\]

Rotation about \(y \) axis
Transformations in OpenGL

– Tutors demo

General Rotation Matrices

• A rotation in 2D is around a point
• A rotation in 3D is around an axis
 – so 3D rotation is w.r.t a line, not just a point
 – there are many more 3D rotations than 2D
 • a 3D space around a given point, not just 1D

Properties of Rotation Matrices

• Columns of R are mutually orthonormal: \(RR^T = R^TR = I \)
• Right-handed coordinate systems: \(\text{det}(R) = 1 \)
 – Recall definition of \(\text{det}(R) = r_1^T(r_2 \times r_3) \)
• Such 3x3 rotation matrices belong to group, \(SO(3) \)
 – Special orthogonal
 – Special --> \(\text{det}(R) = 1 \)

Specifying rotations

• In 2D, a rotation just has an angle
 – if it’s about a particular center, it’s a point and angle
• In 3D, specifying a rotation is more complex
 – basic rotation about origin: unit vector (axis) and angle
 • convention: positive rotation is CCW when vector is pointing at you
 – about different center: point (center), unit vector, and angle
 • this is redundant: think of a second point on the same axis...
• Alternative: Euler angles
 – stack up three coord axis rotations
 • ZYX case: \(R_z(\alpha) R_y(\beta) R_x(\gamma) \)
 – degeneracies exist for some angles
 – E.g., gimbal lock
 – Black board

Unlocked
Gimbal lock
Coming up with the matrix

- Showed matrices for coordinate axis rotations
 - but what if we want rotation about some random axis?
- Can compute by composing elementary transforms
 - transform rotation axis to align with x axis
 - apply rotation
 - inverse transform back into position
- Just as in 2D this can be interpreted as a similarity transform

Building general rotations

- Using elementary transforms you need three
 - translate axis to pass through origin
 - rotate about y to get into x-y plane
 - rotate about z to align with x axis
- Alternative: construct frame and change coordinates
 - choose p, u, v, w to be orthonormal frame with p and u matching the rotation axis
 - apply similarity transform $T = F R_q(\theta) F^{-1}$

Orthonormal frames in 3D

- Useful tools for constructing transformations
- Recall rigid motions
 - affine transforms with pure rotation
 - columns (and rows) form right-handed ONB
 - that is, an orthonormal basis

$$F = \begin{bmatrix} u & v & w & p \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Building 3D frames

- Given a vector a and a secondary vector b
 - The u axis should be parallel to a; the u-v plane should contain b
 - $u = a / ||a||$
 - $w = u \times b; w = w / ||w||$
 - $v = w \times u$
- Given just a vector a
 - The u axis should be parallel to a; don’t care about orientation about that axis
 - Same process but choose arbitrary b first
 - Good choice is not near a: e.g., set smallest entry to 1
Building general rotations

- Alternative: construct frame and change coordinates
 - choose \(p, u, v, w \) to be orthonormal frame with \(p \) and \(u \) matching the rotation axis
 - apply similarity transform \(T = F R_x(\theta) F^{-1} \)
 - interpretation: move to \(x \) axis, rotate, move back
 - interpretation: rewrite \(u \)-axis rotation in new coordinates
 - (each is equally valid)

- Or just derive the formula once, and reuse it (more later)

Derivation of General Rotation Matrix

- General 3x3 3D rotation matrix
- General 4x4 rotation about an arbitrary point

Building transforms from points

- Recall: 2D affine transformation has 6 degrees of freedom (DOFs)
 - this is the number of “knobs” we have to set to define one
- Therefore 6 constraints suffice to define the transformation
 - handy kind of constraint: point \(p \) maps to point \(q \) (2 constraints at once)
 - three point constraints add up to constrain all 6 DOFs
 (i.e. can map any triangle to any other triangle)
- 3D affine transformation has 12 degrees of freedom
 - count them by looking at the matrix entries we’re allowed to change
- Therefore 12 constraints suffice to define the transformation
 - in 3D, this is 4 point constraints
 (i.e. can map any tetrahedron to any other tetrahedron)

Transforming normal vectors

- Transforming surface normals
 - differences of points (and therefore tangents) transform OK
 - normals do not → use inverse transpose matrix

have: \(t \cdot n = t^T n = 0 \)
want: \(M t \cdot X n = t^T M^T X n = 0 \)
so set \(X = (M^T)^{-1} \)
then: \(M t \cdot X n = t^T M^T (M^T)^{-1} n = t^T n = 0 \)