

Translation

Kotation about y axis $\begin{bmatrix} x' \\ y' \\ z' \\ 1 \end{bmatrix} = \begin{bmatrix} \cos \theta & 0 & \sin \theta & 0 \\ 0 & 1 & 0 & 0 \\ -\sin \theta & 0 & \cos \theta & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix}$ $\begin{bmatrix} 1 \\ 1 \end{bmatrix}$ <

Transformations in OpenGL

- Stack-based manipulation of model-view transformation, M
- glMatrixMode(GL_MODELVIEW) Specifies model-view matrix
- glLoadIdentity() M ← 4x4 identity
- glTranslatef(float ux, float uy, float uz) $M \leftarrow MT$
- glRotatef(float theta, float ux, float uy, float uz) $\mathsf{M} \leftarrow \mathsf{M} \, \mathsf{R}$
- glScalef(float sx, float sy, float sz) $M \leftarrow MS$
- $glLoadMatrixf(float[] A) \quad M \leftarrow A$ (Note: column major)
- $glMultMatrixf(float[] A) M \leftarrow MA$ (Note: column major)
- Manipulate matrix stack using:
 - glPushMatrix()
 - glPopMatrix()

Transformations in OpenGL

glMatrixMode(GL_MODELVIEW);	
<pre>glLoadIdentity();</pre>	
<pre>{// Draw something: glPushMatrix(); glTranslatef(); glRotatef(15f,); {// set color and draw simplices glBegin(GL_TRIANGLES); glColor3f(); glVertex3f(); glVertex3f(); glVertex3f(); glVertex3f(); glEnd(); }</pre>	
glPopMatrix(); // toss old transform	
}	
<pre>{// Draw something else: glPushMatrix();</pre>	
glPopMatrix(); // toss old transform	
}	

Cornell CS4620 Fall 2010 • Lecture 3

© 2010 Doug James • 8

Properties of Rotation Matrices

- Columns of R are mutually orthonormal: RR^T=R^TR=I
- Right-handed coordinate systems: det(R)=1

 Recall definition of det(R)=r₁^T(r₂xr₃)
- Such 3x3 rotation matrices belong to group, SO(3)
 - Special orthogonal
 - Special --> det(R)=I

Specifying rotations • In 2D, a rotation just has an angle - if it's about a particular center, it's a point and angle • In 3D, specifying a rotation is more complex - basic rotation about origin: unit vector (axis) and angle · convention: positive rotation is CCW when vector is pointing at you - about different center: point (center), unit vector, and angle · this is redundant: think of a second point on the same axis... • Alternative: Euler angles - stack up three coord axis rotations • ZYX case: Rz(az)*Ry(ay)*Rx(ax) - degeneracies exist for some angles - E.g., gimbal lock Black board Unlocked Gimbal lock

Cornell CS4620 Fall 2010 • Lecture 3

© 2010 Doug James • 12

Building transforms from points

- Recall: 2D affine transformation has 6 degrees of freedom (DOFs)
 - this is the number of "knobs" we have to set to define one
- Therefore 6 constraints suffice to define the transformation
 - handy kind of constraint: point **p** maps to point **q** (2 constraints at once)
 - three point constraints add up to constrain all 6 DOFs (i.e. can map any triangle to any other triangle)
- 3D affine transformation has 12 degrees of freedom - count them by looking at the matrix entries we're allowed to change
- Therefore 12 constraints suffice to define the transformation
 - in 3D, this is 4 point constraints (i.e. can map any tetrahedron to any other tetrahedron)

Transforming normal vectors

- Transforming surface normals
 - differences of points (and therefore tangents) transform OK
 - normals do not --> use inverse transpose matrix

have: $\mathbf{t} \cdot \mathbf{n} = \mathbf{t}^T \mathbf{n} = 0$ want: $M\mathbf{t} \cdot X\mathbf{n} = \mathbf{t}^T M^T X\mathbf{n} = 0$ so set $X = (M^T)^{-1}$ then: $M\mathbf{t} \cdot X\mathbf{n} = \mathbf{t}^T M^T (M^T)^{-1} \mathbf{n} = \mathbf{t}^T \mathbf{n} = 0$

Cornell CS4620 Fall 2010 • Lecture 3

© 2010 Doug James • 19

Cornell CS4620 Fall 2010 • Lecture 3

© 2010 Doug James • 20