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3D Transformations

CS 4620 Lecture 3
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Translation
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Scaling
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Rotation about z axis
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Rotation about x axis
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Rotation about y axis
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Transformations in OpenGL

• Stack-based manipulation of model-view transformation, M

• glMatrixMode(GL_MODELVIEW)  Specifies model-view matrix

• glLoadIdentity()   M ! 4x4 identity

• glTranslatef(float ux, float uy, float uz)      M ! M T

• glRotatef(float theta, float ux, float uy, float uz)  M ! M R

• glScalef(float sx, float sy, float sz)          M ! M S

• glLoadMatrixf(float[] A)    M ! A      (Note: column major)

• glMultMatrixf(float[] A)    M ! M A  (Note: column major)

• Manipulate matrix stack using:
– glPushMatrix()

– glPopMatrix()
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Transformations in OpenGL!

glMatrixMode(GL_MODELVIEW);

glLoadIdentity();

{// Draw something:
glPushMatrix();
glTranslatef(...);
glRotatef(15f, ...);
{// set color and draw simplices

glBegin(GL_TRIANGLES);
glColor3f(...);
glVertex3f(...);
glVertex3f(...);
glVertex3f(...);
glEnd();

}
glPopMatrix(); // toss old transform

}

{// Draw something else:
glPushMatrix();
...
glPopMatrix(); // toss old transform

}
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Transformations in OpenGL!
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– Tutors demo
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General Rotation Matrices

• A rotation in 2D is around a point

• A rotation in 3D is around an axis
– so 3D rotation is w.r.t a line, not just a point

– there are many more 3D rotations than 2D
• a 3D space around a given point, not just 1D

2D 3D
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Properties of Rotation Matrices

• Columns of R are mutually orthonormal:  RRT=RTR=I

• Right-handed coordinate systems:  det(R)=1  
– Recall definition of det(R)=r1

T(r2xr3)

• Such 3x3 rotation matrices belong to group, SO(3)
– Special orthogonal

– Special --> det(R)=1
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Specifying rotations

• In 2D, a rotation just has an angle
– if it’s about a particular center, it’s a point and angle

• In 3D, specifying a rotation is more complex
– basic rotation about origin: unit vector (axis) and angle

• convention: positive rotation is CCW when vector is pointing at you

– about different center: point (center), unit vector, and angle
• this is redundant: think of a second point on the same axis...

• Alternative: Euler angles
– stack up three coord axis rotations

• ZYX case:   Rz(az)*Ry(ay)*Rx(ax)

– degeneracies exist for some angles

– E.g., gimbal lock

– Black board
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Unlocked Gimbal lock
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Coming up with the matrix

• Showed matrices for coordinate axis rotations
– but what if we want rotation about some random axis?

• Can compute by composing elementary transforms
– transform rotation axis to align with x axis

– apply rotation

– inverse transform back into position

• Just as in 2D this can be interpreted as a similarity transform
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Building general rotations

• Using elementary transforms you need three
– translate axis to pass through origin

– rotate about y to get into x-y plane

– rotate about z to align with x axis

• Alternative: construct frame and change coordinates
– choose p, u, v, w to be orthonormal frame with p and u matching the 

rotation axis

– apply similarity transform T = F Rx(! ) F–1
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Orthonormal frames in 3D!

• Useful tools for constructing transformations

• Recall rigid motions
– affine transforms with pure rotation

– columns (and rows) form right-handed ONB
• that is, an orthonormal basis
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Building 3D frames

• Given a vector a and a secondary vector b
– The u axis should be parallel to a; the u–v plane should contain b

• u = u / ||u||

• w = u x b; w = w / ||w||

• v = w x u

• Given just a vector a
– The u axis should be parallel to a; don’t care about orientation about 

that axis
• Same process but choose arbitrary b first

• Good choice is not near a: e.g. set smallest entry to 1
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Building general rotations

• Alternative: construct frame and change coordinates
– choose p, u, v, w to be orthonormal frame with p and u matching the 

rotation axis

– apply similarity transform T = F Rx(! ) F–1

– interpretation: move to x axis, rotate, move back

– interpretation: rewrite u-axis rotation in new coordinates

– (each is equally valid)

• Or just derive the formula once, and reuse it (more later)
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Derivation of General Rotation Matrix

• General 3x3 3D rotation matrix

• General 4x4 rotation about an arbitrary point
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Building transforms from points

• Recall: 2D affine transformation has 6 degrees of freedom 
(DOFs)
– this is the number of “knobs” we have to set to define one

• Therefore 6 constraints suffice to define the transformation
– handy kind of constraint: point p maps to point q (2 constraints at once)

– three point constraints add up to constrain all 6 DOFs
(i.e. can map any triangle to any other triangle)

• 3D affine transformation has 12 degrees of freedom
– count them by looking at the matrix entries we’re allowed to change

• Therefore 12 constraints suffice to define the transformation
– in 3D, this is 4 point constraints

(i.e. can map any tetrahedron to any other tetrahedron)
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Transforming normal vectors

• Transforming surface normals
– differences of points (and therefore tangents) transform OK

– normals do not --> use inverse transpose matrix
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