
© 2010 Doug James • Cornell CS4620 Fall 2010 •!Lecture 3

3D Transformations

CS 4620 Lecture 3

1 © 2010 Doug James • Cornell CS4620 Fall 2010 •!Lecture 3

Translation

2

© 2010 Doug James • Cornell CS4620 Fall 2010 •!Lecture 3

Scaling

3 © 2010 Doug James • Cornell CS4620 Fall 2010 •!Lecture 3

Rotation about z axis

4

© 2010 Doug James • Cornell CS4620 Fall 2010 •!Lecture 3

Rotation about x axis

5 © 2010 Doug James • Cornell CS4620 Fall 2010 •!Lecture 3

Rotation about y axis

6

© 2010 Doug James • Cornell CS4620 Fall 2010 •!Lecture 3

Transformations in OpenGL

• Stack-based manipulation of model-view transformation, M

• glMatrixMode(GL_MODELVIEW) Specifies model-view matrix

• glLoadIdentity() M ! 4x4 identity

• glTranslatef(float ux, float uy, float uz) M ! M T

• glRotatef(float theta, float ux, float uy, float uz) M ! M R

• glScalef(float sx, float sy, float sz) M ! M S

• glLoadMatrixf(float[] A) M ! A (Note: column major)

• glMultMatrixf(float[] A) M ! M A (Note: column major)

• Manipulate matrix stack using:
– glPushMatrix()

– glPopMatrix()

7 © 2010 Doug James • Cornell CS4620 Fall 2010 •!Lecture 3

Transformations in OpenGL!

glMatrixMode(GL_MODELVIEW);

glLoadIdentity();

{// Draw something:
glPushMatrix();
glTranslatef(...);
glRotatef(15f, ...);
{// set color and draw simplices

glBegin(GL_TRIANGLES);
glColor3f(...);
glVertex3f(...);
glVertex3f(...);
glVertex3f(...);
glEnd();

}
glPopMatrix(); // toss old transform

}

{// Draw something else:
glPushMatrix();
...
glPopMatrix(); // toss old transform

}

8

© 2010 Doug James • Cornell CS4620 Fall 2010 •!Lecture 3

Transformations in OpenGL!

9

– Tutors demo

© 2010 Doug James • Cornell CS4620 Fall 2010 •!Lecture 3

General Rotation Matrices

• A rotation in 2D is around a point

• A rotation in 3D is around an axis
– so 3D rotation is w.r.t a line, not just a point

– there are many more 3D rotations than 2D
• a 3D space around a given point, not just 1D

2D 3D

10

© 2010 Doug James • Cornell CS4620 Fall 2010 •!Lecture 3

Properties of Rotation Matrices

• Columns of R are mutually orthonormal: RRT=RTR=I

• Right-handed coordinate systems: det(R)=1
– Recall definition of det(R)=r1

T(r2xr3)

• Such 3x3 rotation matrices belong to group, SO(3)
– Special orthogonal

– Special --> det(R)=1

11 © 2010 Doug James • Cornell CS4620 Fall 2010 •!Lecture 3

Specifying rotations

• In 2D, a rotation just has an angle
– if it’s about a particular center, it’s a point and angle

• In 3D, specifying a rotation is more complex
– basic rotation about origin: unit vector (axis) and angle

• convention: positive rotation is CCW when vector is pointing at you

– about different center: point (center), unit vector, and angle
• this is redundant: think of a second point on the same axis...

• Alternative: Euler angles
– stack up three coord axis rotations

• ZYX case: Rz(az)*Ry(ay)*Rx(ax)

– degeneracies exist for some angles

– E.g., gimbal lock

– Black board

12

Unlocked Gimbal lock

© 2010 Doug James • Cornell CS4620 Fall 2010 •!Lecture 3

Coming up with the matrix

• Showed matrices for coordinate axis rotations
– but what if we want rotation about some random axis?

• Can compute by composing elementary transforms
– transform rotation axis to align with x axis

– apply rotation

– inverse transform back into position

• Just as in 2D this can be interpreted as a similarity transform

13 © 2010 Doug James • Cornell CS4620 Fall 2010 •!Lecture 3

Building general rotations

• Using elementary transforms you need three
– translate axis to pass through origin

– rotate about y to get into x-y plane

– rotate about z to align with x axis

• Alternative: construct frame and change coordinates
– choose p, u, v, w to be orthonormal frame with p and u matching the

rotation axis

– apply similarity transform T = F Rx(!) F–1

14

© 2010 Doug James • Cornell CS4620 Fall 2010 •!Lecture 3

Orthonormal frames in 3D!

• Useful tools for constructing transformations

• Recall rigid motions
– affine transforms with pure rotation

– columns (and rows) form right-handed ONB
• that is, an orthonormal basis

15 © 2010 Doug James • Cornell CS4620 Fall 2010 •!Lecture 3

Building 3D frames

• Given a vector a and a secondary vector b
– The u axis should be parallel to a; the u–v plane should contain b

• u = u / ||u||

• w = u x b; w = w / ||w||

• v = w x u

• Given just a vector a
– The u axis should be parallel to a; don’t care about orientation about

that axis
• Same process but choose arbitrary b first

• Good choice is not near a: e.g. set smallest entry to 1

16

© 2010 Doug James • Cornell CS4620 Fall 2010 •!Lecture 3

Building general rotations

• Alternative: construct frame and change coordinates
– choose p, u, v, w to be orthonormal frame with p and u matching the

rotation axis

– apply similarity transform T = F Rx(!) F–1

– interpretation: move to x axis, rotate, move back

– interpretation: rewrite u-axis rotation in new coordinates

– (each is equally valid)

• Or just derive the formula once, and reuse it (more later)

17 © 2010 Doug James • Cornell CS4620 Fall 2010 •!Lecture 3

Derivation of General Rotation Matrix

• General 3x3 3D rotation matrix

• General 4x4 rotation about an arbitrary point

18

© 2010 Doug James • Cornell CS4620 Fall 2010 •!Lecture 3

Building transforms from points

• Recall: 2D affine transformation has 6 degrees of freedom
(DOFs)
– this is the number of “knobs” we have to set to define one

• Therefore 6 constraints suffice to define the transformation
– handy kind of constraint: point p maps to point q (2 constraints at once)

– three point constraints add up to constrain all 6 DOFs
(i.e. can map any triangle to any other triangle)

• 3D affine transformation has 12 degrees of freedom
– count them by looking at the matrix entries we’re allowed to change

• Therefore 12 constraints suffice to define the transformation
– in 3D, this is 4 point constraints

(i.e. can map any tetrahedron to any other tetrahedron)

19 © 2010 Doug James • Cornell CS4620 Fall 2010 •!Lecture 3

Transforming normal vectors

• Transforming surface normals
– differences of points (and therefore tangents) transform OK

– normals do not --> use inverse transpose matrix

20

