3D Transformations

CS 4620 Lecture 3

Scaling

$$
\left[\begin{array}{c}
x^{\prime} \\
y^{\prime} \\
z^{\prime} \\
1
\end{array}\right]=\left[\begin{array}{cccc}
s_{x} & 0 & 0 & 0 \\
0 & s_{y} & 0 & 0 \\
0 & 0 & s_{z} & 0 \\
0 & 0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z \\
1
\end{array}\right]
$$

Translation

$$
\left[\begin{array}{c}
x^{\prime} \\
y^{\prime} \\
z^{\prime} \\
1
\end{array}\right]=\left[\begin{array}{lllc}
1 & 0 & 0 & t_{x} \\
0 & 1 & 0 & t_{y} \\
0 & 0 & 1 & t_{z} \\
0 & 0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z \\
1
\end{array}\right]
$$

Cornell CS4620 Fall 2010•Lecture 3

Rotation about z axis

$$
\left[\begin{array}{c}
x^{\prime} \\
y^{\prime} \\
z^{\prime} \\
1
\end{array}\right]=\left[\begin{array}{cccc}
\cos \theta & -\sin \theta & 0 & 0 \\
\sin \theta & \cos \theta & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z \\
1
\end{array}\right]
$$

Rotation about x axis

$$
\left[\begin{array}{l}
x^{\prime} \\
y^{\prime} \\
z^{\prime} \\
1
\end{array}\right]=\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & \cos \theta & -\sin \theta & 0 \\
0 & \sin \theta & \cos \theta & 0 \\
0 & 0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z \\
1
\end{array}\right]
$$

Cornell CS4620 Fall 2010 • Lecture 3

Transformations in OpenGL

- Stack-based manipulation of model-view transformation, M
- glMatrixMode(GL_MODELVIEW) Specifies model-view matrix
- glLoadIdentity () $M \leftarrow 4 \times 4$ identity
- glTranslatef(float ux, float uy, float uz) $M \leftarrow M T$
- glRotatef(float theta, float ux, float uy, float uz) $M \leftarrow M R$
- glScalef(float sx, float sy, float sz) $M \leftarrow M S$
- glloadMatrixf(float[] A) $M \leftarrow A \quad$ (Note: column major)
- glMultMatrixf(float[] A) $M \leftarrow M A$ (Note: column major)
- Manipulate matrix stack using:
- glpushMatrix()
- glPopMatrix()

Rotation about y axis

$$
\left[\begin{array}{l}
x^{\prime} \\
y^{\prime} \\
z^{\prime} \\
1
\end{array}\right]=\left[\begin{array}{cccc}
\cos \theta & 0 & \sin \theta & 0 \\
0 & 1 & 0 & 0 \\
-\sin \theta & 0 & \cos \theta & 0 \\
0 & 0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z \\
1
\end{array}\right]
$$

Cornell CS4620 Fall 2010 • Lecture 3

Transformations in OpenGL

```
glMatrixMode(GL_MODELVIEW) ;
glLoadIdentity();
    {// Draw something:
        glPushmatrix();
        girranslatef (...);
        {// set color and draw simplices
            g1Begin(GL_TRIANGLES);
        g1Color3f(
        glVertex3f(..);
        glvertex3f(..);
        glVertex3f(
        glEnd();
    glPopMatrix(); // toss old transform
}
{// Draw something else:
    glpushMatrix();
    giPopMatrix(); // toss old transform
    }
```


Transformations in OpenGL

- Tutors demo

Properties of Rotation Matrices

- Columns of R are mutually orthonormal: $R^{\top}=R^{\top} R=I$
- Right-handed coordinate systems: $\operatorname{det}(\mathrm{R})=1$
- Recall definition of $\operatorname{det}(\mathrm{R})=\mathrm{r}_{1}^{\top}\left(\mathrm{r}_{2} \times \mathrm{r}_{3}\right)$
- Such 3×3 rotation matrices belong to group, $\mathrm{SO}(3)$
- Special orthogonal
- Special --> $\operatorname{det}(\mathrm{R})=1$

General Rotation Matrices

- A rotation in 2D is around a point
- A rotation in 3D is around an axis
- so 3D rotation is w.r.t a line, not just a point
- there are many more 3D rotations than 2D - a 3D space around a given point, not just ID

2D

3D

Cornell CS4620 Fall 2010 • Lecture 3

Specifying rotations

- In 2D, a rotation just has an angle
- if it's about a particular center, it's a point and angle
- In 3D, specifying a rotation is more complex
- basic rotation about origin: unit vector (axis) and angle
- convention: positive rotation is CCW when vector is pointing at you
- about different center: point (center), unit vector, and angle
- this is redundant: think of a second point on the same axis...
- Alternative: Euler angles
- stack up three coord axis rotations
- ZYX case: Rz(az)*Ry(ay)*Rx(ax)
- degeneracies exist for some angles
- E.g., gimbal lock
- Black board

Unlocked

Gimbal lock

Coming up with the matrix

- Showed matrices for coordinate axis rotations
- but what if we want rotation about some random axis?
- Can compute by composing elementary transforms
- transform rotation axis to align with x axis
- apply rotation
- inverse transform back into position
- Just as in 2D this can be interpreted as a similarity transform

Orthonormal frames in 3D

- Useful tools for constructing transformations
- Recall rigid motions
- affine transforms with pure rotation
- columns (and rows) form right-handed ONB
- that is, an Orthonormal basis

$$
F=\left[\begin{array}{cccc}
\mathbf{u} & \mathbf{v} & \mathbf{w} & \mathbf{p} \\
0 & 0 & 0 & 1
\end{array}\right]
$$

Building general rotations

- Using elementary transforms you need three
- translate axis to pass through origin
- rotate about y to get into $x-y$ plane
- rotate about z to align with x axis
- Alternative: construct frame and change coordinates
- choose p, u, v, w to be orthonormal frame with p and u matching the rotation axis
- apply similarity transform $T=F R_{x}(\theta) F^{-1}$

Building 3D frames

- Given a vector \mathbf{a} and a secondary vector \mathbf{b}
- The \mathbf{u} axis should be parallel to \mathbf{a}; the $\mathbf{u}-\mathbf{v}$ plane should contain \mathbf{b} - $\mathbf{u}=\mathbf{u} /\|\mathbf{u}\|$
- $\mathbf{w}=\mathbf{u} \times \mathbf{b} ; \mathbf{w}=\mathbf{w} /\|\mathbf{w}\|$
- $\mathbf{v}=\mathbf{w} \times \mathbf{u}$
- Given just a vector a
- The \mathbf{u} axis should be parallel to \mathbf{a}; don't care about orientation about that axis
- Same process but choose arbitrary b first
- Good choice is not near a: e.g. set smallest entry to I

Building general rotations

- Alternative: construct frame and change coordinates
- choose p, u, v, w to be orthonormal frame with p and u matching the rotation axis
- apply similarity transform $T=F R_{x}(\theta) F^{-1}$
- interpretation: move to x axis, rotate, move back
- interpretation: rewrite u-axis rotation in new coordinates
- (each is equally valid)
- Or just derive the formula once, and reuse it (more later)

Building transforms from points

- Recall: 2D affine transformation has 6 degrees of freedom (DOFs)
- this is the number of "knobs" we have to set to define one
- Therefore 6 constraints suffice to define the transformation
- handy kind of constraint: point \mathbf{p} maps to point \mathbf{q} (2 constraints at once)
- three point constraints add up to constrain all 6 DOFs (i.e. can map any triangle to any other triangle)
- 3D affine transformation has 12 degrees of freedom
- count them by looking at the matrix entries we're allowed to change
- Therefore 12 constraints suffice to define the transformation
- in 3D, this is 4 point constraints
(i.e. can map any tetrahedron to any other tetrahedron)

Derivation of General Rotation Matrix

- General 3×3 3D rotation matrix
- General 4×4 rotation about an arbitrary point

Transforming normal vectors

- Transforming surface normals
- differences of points (and therefore tangents) transform OK
- normals do not --> use inverse transpose matrix

have: $\mathbf{t} \cdot \mathbf{n}=\mathbf{t}^{T} \mathbf{n}=0$
want: $M \mathbf{t} \cdot X \mathbf{n}=\mathbf{t}^{T} M^{T} X \mathbf{n}=0$
so set $X=\left(M^{T}\right)^{-1}$
then: $M \mathbf{t} \cdot X \mathbf{n}=\mathbf{t}^{T} M^{T}\left(M^{T}\right)^{-1} \mathbf{n}=\mathbf{t}^{T} \mathbf{n}=0$

