Scene Graphs

CS 4620 Lecture 7

Data structures with transforms

- Representing a drawing (“scene”)
- List of objects
- Transform for each object
 - can use minimal primitives: ellipse is transformed circle
 - transform applies to points of object

Example

- Can represent drawing with flat list
 - but editing operations require updating many transforms

Groups of objects

- Treat a set of objects as one
- Introduce new object type: group
 - contains list of references to member objects
- This makes the model into a tree
 - interior nodes = groups
 - leaf nodes = objects
 - edges = membership of object in group
Example

- Add group as a new object type
 - lets the data structure reflect the drawing structure
 - enables high-level editing by changing just one node

The Scene Graph (tree)

- A name given to various kinds of graph structures (nodes connected together) used to represent scenes
- Simplest form: tree
 - just saw this
 - every node has one parent
 - leaf nodes are identified with objects in the scene

Concatenation and hierarchy

- Transforms associated with nodes or edges
- Each transform applies to all geometry below it
 - want group transform to transform each member
 - members already transformed—concatenate
- Frame transform for object is product of all matrices along path from root
 - each object's transform describes relationship between its local coordinates and its group's coordinates
 - frame-to-canonical transform is the result of repeatedly changing coordinates from group to containing group

Instances

- Simple idea: allow an object to be a member of more than one group at once
 - transform different in each case
 - leads to linked copies
 - single editing operation changes all instances
 - low memory overhead
 - hardware acceleration available

Christopher Nichols
Example

- Allow multiple references to nodes
 - reflects more of drawing structure
 - allows editing of repeated parts in one operation

The Scene Graph (with instances)

- With instances, there is no more tree
 - an object that is instanced multiple times has more than one parent
- Transform tree becomes DAG
 - directed acyclic graph
 - group is not allowed to contain itself, even indirectly
- Transforms still accumulate along path from root
 - now paths from root to leaves are identified with scene objects

Implementing a hierarchy

- Object-oriented language is convenient
 - define shapes and groups as derived from single class

Implementing traversal

- Pass a transform down the hierarchy
 - before drawing, concatenate
Basic Scene Graph operations

- Editing a transformation
 - good to present usable UI
- Getting transform of object in canonical (world) frame
 - traverse path from root to leaf
- Grouping and ungrouping
 - can do these operations without moving anything
 - group: insert identity node
 - ungroup: remove node, push transform to children
- Reparenting
 - move node from one parent to another
 - can do without altering position

Adding more than geometry

- Objects have properties besides shape
 - color, shading parameters
 - approximation parameters (e.g. precision of subdividing curved surfaces into triangles)
 - behavior in response to user input
 - …
- Setting properties for entire groups is useful
 - paint entire window green
- Many systems include some kind of property nodes
 - in traversal they are read as, e.g., “set current color”

Scene Graph variations

- Where transforms go
 - in every node
 - on edges
 - in group nodes only
 - in special Transform nodes
- Tree vs. DAG
- Nodes for cameras and lights?

Scene Graph Implementations

- Many full-featured implementations
- Open Inventor (since late 80’s)
 - C++/Java; Built on top of OpenGL
- Java3D (since late 90’s)
 - Built on top of OpenGL or DirectX
 - https://java3d.dev.java.net/
- NVIDIA Scenix (since late 200x’s)
 - Built on top of OpenGL
 - Support programmable shading
 - Distributed GPU rendering
 - Support for ray tracing (using OptiX)