Perspective

CS 4620 Lecture 3

Cornell CS4620 Fall 2009 • Lecture 3

© 2009 Doug James • I

© 2009 Doug James • 3

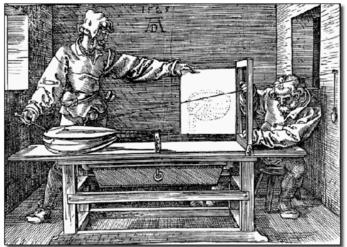
History of projection

- Ancient times: Greeks wrote about laws of perspective
- Renaissance: perspective is adopted by artists

Duccio c. 1308

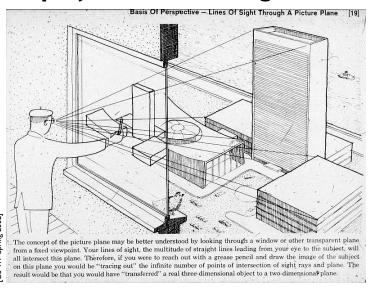
Cornell CS4620 Fall 2009 • Lecture 3

© 2009 Doug James • 2

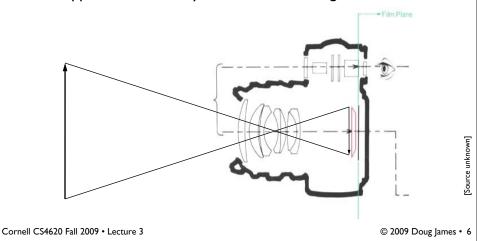

History of projection

• Later Renaissance: perspective formalized precisely

da Vinci c. 1498


Plane projection in drawing

Mechanical creation of a perspective image by Albrecht Dürer


Cornell CS4620 Fall 2009 • Lecture 3

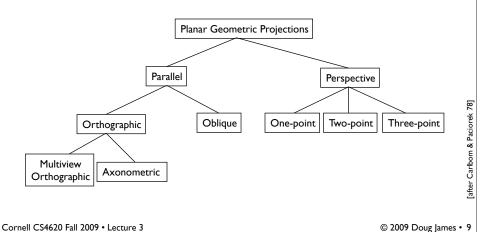
Plane projection in drawing

Plane projection in photography

- · This is another model for what we are doing
 - applies more directly in realistic rendering

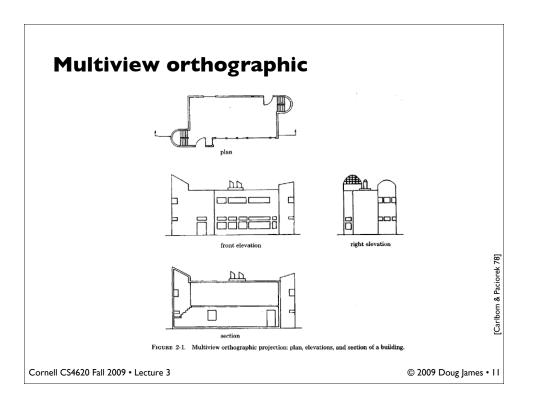
Plane projection in photography

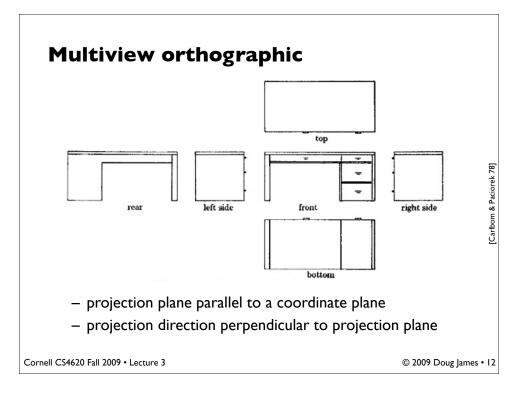
[Richard Zakia]

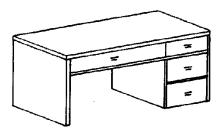

Ray generation vs. projection

- · Viewing in ray tracing
 - start with image point
 - compute ray that projects to that point
 - do this using geometry
- Viewing by projection
 - start with 3D point
 - compute image point that it projects to
 - do this using transforms
- Inverse processes
 - ray casting computes the 3D preimage of projection

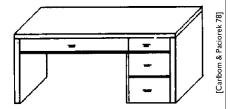
Cornell CS4620 Fall 2009 • Lecture 3


Classical projections


- Emphasis on cube-like objects
 - traditional in mechanical and architectural drawing

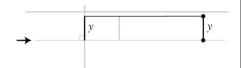

• Viewing rays are parallel rather than diverging - like a perspective camera that's far away | Perspective | P

Cornell CS4620 Fall 2009 • Lecture 3



Off-axis parallel

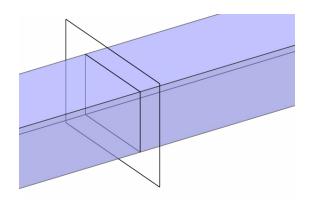
axonometric: projection plane perpendicular to projection direction but not parallel to coordinate planes


oblique: projection plane parallel to a coordinate plane but not perpendicular to projection direction.

Cornell CS4620 Fall 2009 • Lecture 3

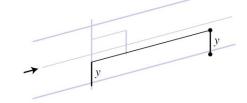
© 2009 Doug James • 13

"Orthographic" projection


- In graphics usually we lump axonometric with orthographic
 - projection plane perpendicular to projection direction
 - image height determines size of objects in image

Cornell CS4620 Fall 2009 • Lecture 3

© 2009 Doug James • 14


View volume: orthographic

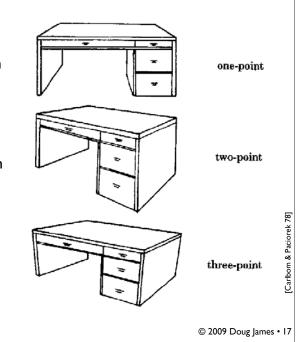
Cornell CS4620 Fall 2009 • Lecture 3 © 2009 Doug James • 15

Oblique projection

- View direction no longer coincides with projection plane normal (one more parameter)
 - objects at different distances still same size
 - objects are shifted in the image depending on their depth

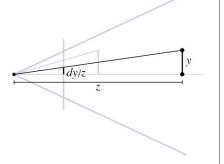
Cornell CS4620 Fall 2009 • Lecture 3

Perspective


one-point: projection plane parallel to a coordinate plane (to two coordinate axes)

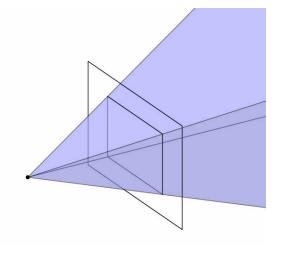
two-point: projection plane parallel to one coordinate axis

three-point:


projection plane not parallel to a coordinate axis

Cornell CS4620 Fall 2009 • Lecture 3

Perspective projection (normal)


- Perspective is projection by lines through a point;
 "normal" = plane perpendicular to view direction
 - magnification determined by:
 - image height
 - object depth
 - image plane distance
 - f.o.v. α = 2 atan(h/(2d))
 - -y'=dy/z
 - "normal" case corresponds to common types of cameras

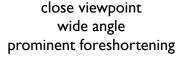
Cornell CS4620 Fall 2009 • Lecture 3

© 2009 Doug James • 18

View volume: perspective

Cornell CS4620 Fall 2009 • Lecture 3 © 2009 Doug James • 19

Field of view (or f.o.v.)


- The angle between the rays corresponding to opposite edges of a perspective image
 - easy to compute only for "normal" perspective
 - have to decide to measure vert., horiz., or diag.
- In cameras, determined by focal length
 - confusing because of many image sizes
 - for 35mm format (36mm by 24mm image)
 - 18mm = 67° v.f.o.v. super-wide angle
 - 28mm = 46° v.f.o.v. wide angle
 - 50mm = 27° v.f.o.v. "normal"
 - 100mm = 14° v.f.o.v. narrow angle ("telephoto")

Cornell CS4620 Fall 2009 • Lecture 3

Field of view

• Determines "strength" of perspective effects

far viewpoint narrow angle little foreshortening

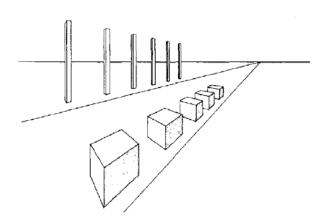
Cornell CS4620 Fall 2009 • Lecture 3

© 2009 Doug James • 21

© 2009 Doug James • 23

Choice of field of view

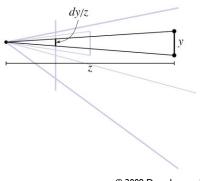
- In photography, wide angle lenses are specialty tools
 - "hard to work with"
 - easy to create weird-looking perspective effects
- In graphics, you can type in whatever f.o.v. you want
 - and people often type in big numbers!



© 2009 Doug James • 22

Cornell CS4620 Fall 2009 • Lecture 3

Perspective distortions


• Lengths, length ratios

Cornell CS4620 Fall 2009 • Lecture 3

Shifted perspective projection

- Perspective but with projection plane not perpendicular to view direction
 - additional parameter:
 projection plane normal
 - exactly equivalent to cropping out an off-center rectangle from a larger "normal" perspective
 - corresponds to view camera in photography

Cornell CS4620 Fall 2009 • Lecture 3

Why shifted perspective?

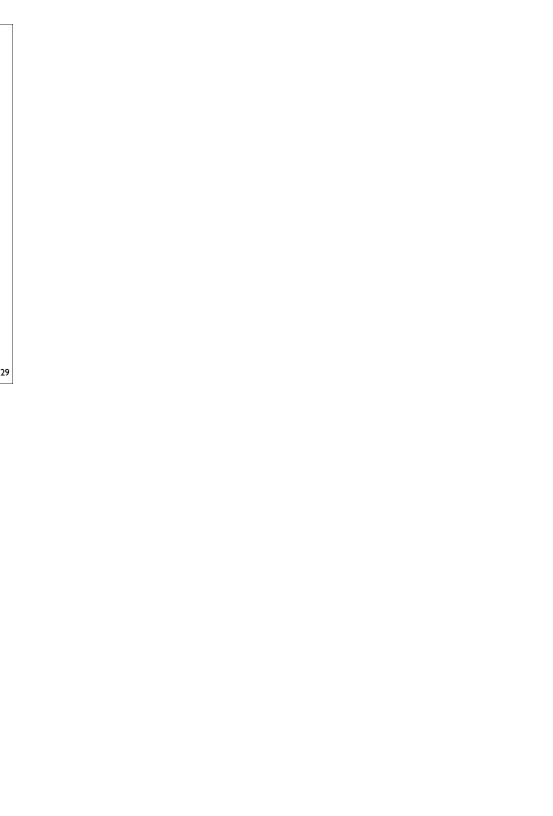
- Control convergence of parallel lines
- Standard example: architecture
 - buildings are taller than you, so you look up
 - top of building is farther away, so it looks smaller
- Solution: make projection plane parallel to facade
 - top of building is the same distance from the projection plane
- Same perspective effects can be achieved using postprocessing
 - (though not the focus effects)
 - choice of which rays vs. arrangement of rays in image

Specifying perspective projections

- Many ways to do this
 - common: from, at, up, v.f.o.v. (but not for shifted)
- One way (used in ray tracer):
 - viewpoint, view direction, up
 - establishes location and orientation of viewer
 - view direction is the direction of the center ray
 - image width, image height, projection distance
 - establishes size and location of image rectangle
 - image plane normal
 - can be different from view direction to get shifted perspective

Cornell CS4620 Fall 2009 • Lecture 3

Many other projections possible


Optimizing Content-Preserving Projections for Wide-Angle Images

[Carroll et al., SIGGRAPH 2009]

Cornell CS4620 Fall 2009 • Lecture 3

