A physical layer perspective on WANs (Part 2)

Guest lecture: Rachee Singh

CS4450: Introduction to Computer Networks
Fiber (glass) is an efficient (low loss) medium for transmitting signals.
Fiber (glass) is an efficient (low loss) medium for transmitting signals.
Revise: signal modulation
Revise: signal modulation

1. Modulating the light signal
Revise: signal modulation

1. Modulating the light signal
 1. Encode bits on a wave or pulse
Revise: signal modulation

1. Modulating the light signal
 1. Encode bits on a wave or pulse
 2. By changing the properties of the signal
Revise: signal modulation

1. Modulating the light signal
 1. Encode bits on a wave or pulse
 2. By changing the properties of the signal

2. Types of modulations
Revise: signal modulation

1. Modulating the light signal
 1. Encode bits on a wave or pulse
 2. By changing the *properties* of the signal

2. Types of modulations
 1. Change *amplitude* of the signal
Revise: signal modulation

1. Modulating the light signal
 1. Encode bits on a wave or pulse
 2. By changing the properties of the signal

2. Types of modulations
 1. Change *amplitude* of the signal
 2. Change *phase* of the signal
Revise: signal modulation

1. Modulating the light signal
 1. Encode bits on a wave or pulse
 2. By changing the properties of the signal

2. Types of modulations
 1. Change amplitude of the signal
 2. Change phase of the signal
 3. ..
1. Modulating the light signal
 1. Encode bits on a wave or pulse
 2. By changing the *properties* of the signal
2. Types of modulations
 1. Change *amplitude* of the signal
 2. Change *phase* of the signal
 3. ..
3. Finite set of choices for change in properties of the signal
Revise: signal modulation

1. Modulating the light signal
 1. Encode bits on a wave or pulse
 2. By changing the properties of the signal

2. Types of modulations
 1. Change amplitude of the signal
 2. Change phase of the signal
 3. ..

3. Finite set of choices for change in properties of the signal
 1. Each choice is called a symbol
Revise: signal modulation

1. Modulating the light signal
 1. Encode bits on a wave or pulse
 2. By changing the properties of the signal
2. Types of modulations
 1. Change amplitude of the signal
 2. Change phase of the signal
 3. ..
3. Finite set of choices for change in properties of the signal
 1. Each choice is called a symbol
Revise: signal modulation
Revise: signal modulation

1. Simple modulation format:
Revise: signal modulation

1. Simple modulation format:
 1. One symbol to represent “1”
Revise: signal modulation

1. Simple modulation format:
 1. One symbol to represent “1”
 2. One symbol to represent “0”
Revise: signal modulation

1. Simple modulation format:
 1. One symbol to represent “1”
 2. One symbol to represent “0”
2. Modify the phase of the signal to encode
Revise: signal modulation

1. Simple modulation format:
 1. One symbol to represent “1”
 2. One symbol to represent “0”

2. Modify the phase of the signal to encode
 1. Phase = 0 to encode input bit 0
Revise: signal modulation

1. Simple modulation format:
 1. One symbol to represent “1”
 2. One symbol to represent “0”
2. Modify the phase of the signal to encode
 1. Phase = 0 to encode input bit 0
 2. Phase = 180 to encode input bit 1
1. Simple modulation format:
 1. One symbol to represent “1”
 2. One symbol to represent “0”
2. Modify the phase of the signal to encode
 1. Phase = 0 to encode input bit 0
 2. Phase = 180 to encode input bit 1
1. Simple modulation format:
 1. One symbol to represent “1”
 2. One symbol to represent “0”
2. Modify the phase of the signal to encode
 1. Phase = 0 to encode input bit 0
 2. Phase = 180 to encode input bit 1
3. This modulation is called *binary phase shift keying (BPSK)*
1. Simple modulation format:
 1. One symbol to represent "1"
 2. One symbol to represent "0"

2. Modify the phase of the signal to encode
 1. Phase = 0 to encode input bit 0
 2. Phase = 180 to encode input bit 1

3. This modulation is called *binary phase shift keying (BPSK)*

4. Number of bits encoded per symbol $N = \log_2 M$
1. Simple modulation format:
 1. One symbol to represent “1”
 2. One symbol to represent “0”
2. Modify the phase of the signal to encode
 1. Phase = 0 to encode input bit 0
 2. Phase = 180 to encode input bit 1
3. This modulation is called *binary phase shift keying (BPSK)*
4. Number of bits encoded per symbol $N = \log_2 M$
 1. *BPSK* encodes 1 bit per symbol
Revise: signal modulation

Transmitted Symbols
1. Quadrature phase shift keying (QPSK)

Transmitted Symbols
1. Quadrature phase shift keying (QPSK)

1. Four symbols
Revise: signal modulation

1. Quadrature phase shift keying (QPSK)
 1. Four symbols
 2. 2 bits per symbol

Transmitted Symbols:
- 10
- 00
- 11
- 01
Signal modulation

BPSK
1 bit per symbol
Signal modulation

BPSK
1 bit per symbol

QPSK
2 bits per symbol
Signal modulation

BPSK
1 bit per symbol

QPSK
2 bits per symbol

16-QAM
4 bits per symbol
Signal modulation

BPSK
1 bit per symbol

QPSK
2 bits per symbol

16-QAM
4 bits per symbol

Packing more bits per symbol with different modulation formats
Revise: signal modulation
Revise: signal modulation

Symbol rate or baud rate:
Symbol rate or baud rate:

1. Decides number of symbols per second
Revise: signal modulation

Symbol rate or baud rate:

1. Decides number of symbols per second
2. Unit of symbol rate: baud
Symbol rate or baud rate:

1. Decides number of symbols per second
2. Unit of symbol rate: baud
3. Example: baud rate of 1000 \rightarrow 1000 symbols sent on the channel per second
Symbol rate or baud rate:

1. Decides number of symbols per second
2. Unit of symbol rate: baud
3. Example: baud rate of 1000 —> 1000 symbols sent on the channel per second

Baud rate = 4, N = 2
Hartley’s Law

\[R = f_p \log_2 M \]

Where,
\[R \] = data rate, bit rate in bits/second
\[f_p \] = symbol rate or baud rate in symbols/second
\[M \] = number of levels in a given symbol

Constellation Diagram of 16-QAM
Hartley’s Law

\[R = f_p \log_2 M \]

Where,

- \(R \) = data rate, bit rate in bits/second
- \(f_p \) = symbol rate or baud rate in symbols/second
- \(M \) = number of levels in a given symbol

Exercise: If the baud rate of the transmission is 50 Gbaud, what is the data rate of a wavelength modulated with 16-QAM modulation?
Hartley’s Law

\[R = f_p \log_2 M \]

Where,
\(R \) = data rate, bit rate in bits/second
\(f_p \) = symbol rate or baud rate in symbols/second
\(M \) = number of levels in a given symbol

Exercise: If the baud rate of the transmission is 50 Gbaud, what is the data rate of a wavelength modulated with 16-QAM modulation?

Hint: 16-QAM has 16 levels per symbol
Hartley’s Law

\[R = f_p \log_2 M \]

Where,

- \(R \) = data rate, bit rate in bits/second
- \(f_p \) = symbol rate or baud rate in symbols/second
- \(M \) = number of levels in a given symbol

Exercise: If the baud rate of the transmission is 50 Gbaud, what is the data rate of a wavelength modulated with 16-QAM modulation?

Hint: 16-QAM has 16 levels per symbol

Answer = \(50 \times \log_2 16 = 200 \text{ Gbps} \)
Noisy channels
Noisy channels

1. All media add some noise to the signal
Noisy channels

1. All media add some noise to the signal
 1. Fiber adds noise to the transmitted signal
Noisy channels

1. All media add some noise to the signal
 1. Fiber adds noise to the transmitted signal
 2. The received symbols are a result of the transmission + noise
Noisy channels

1. All media add some noise to the signal
 1. Fiber adds noise to the transmitted signal
 2. The received symbols are a result of the transmission + noise
2. Sustaining a modulation format for transmission
Noisy channels

1. All media add some noise to the signal
 1. Fiber adds noise to the transmitted signal
 2. The received symbols are a result of the transmission + noise

2. Sustaining a modulation format for transmission
 1. Depends on the noise in the media
Noisy channels

1. All media add some noise to the signal
 1. Fiber adds noise to the transmitted signal
 2. The received symbols are a result of the transmission + noise
2. Sustaining a modulation format for transmission
 1. Depends on the noise in the media
3. High noise => harder to decode bits from symbols
Noisy channels

1. All media add some noise to the signal
 1. Fiber adds noise to the transmitted signal
 2. The received symbols are a result of the transmission + noise

2. Sustaining a modulation format for transmission
 1. Depends on the noise in the media
 3. High noise => harder to decode bits from symbols
Noisy channels

1. All media add some noise to the signal
 1. Fiber adds noise to the transmitted signal
 2. The received symbols are a result of the transmission + noise

2. Sustaining a modulation format for transmission
 1. Depends on the noise in the media
 3. High noise => harder to decode bits from symbols
Noisy channels

1. All media add some noise to the signal
 1. Fiber adds noise to the transmitted signal
 2. The received symbols are a result of the transmission + noise
2. Sustaining a modulation format for transmission
 1. Depends on the noise in the media
 2. High noise => harder to decode bits from symbols
1. All media add some noise to the signal
 1. Fiber adds noise to the transmitted signal
 2. The received symbols are a result of the transmission + noise
2. Sustaining a modulation format for transmission
 1. Depends on the noise in the media
 3. High noise => harder to decode bits from symbols
Long-haul network connectivity: channel noise
Long-haul network connectivity: channel noise

1. Hartley’s law assumes an “error-less” channel
Long-haul network connectivity: channel noise

1. Hartley’s law assumes an “error-less” channel
 • Computes an upper-bound on channel capacity
Long-haul network connectivity: channel noise

1. Hartley’s law assumes an “error-less” channel
 - Computes an upper-bound on channel capacity
 - In reality, fiber adds noise
1. Hartley’s law assumes an “error-less” channel
 • Computes an upper-bound on channel capacity
 • In reality, fiber adds noise

2. Signal-to-noise ratio
Long-haul network connectivity: channel noise

1. Hartley’s law assumes an “error-less” channel
 • Computes an upper-bound on channel capacity
 • In reality, fiber adds noise

2. Signal-to-noise ratio
 • Measures the ratio of signal power to noise power in the channel
Long-haul network connectivity: channel noise

1. Hartley’s law assumes an “error-less” channel
 • Computes an upper-bound on channel capacity
 • In reality, fiber adds noise

2. Signal-to-noise ratio
 • Measures the ratio of signal power to noise power in the channel
 • Signal power is the power of the data signal that encodes bits
Long-haul network connectivity: channel noise

1. Hartley’s law assumes an “error-less” channel
 - Computes an upper-bound on channel capacity
 - In reality, fiber adds noise

2. Signal-to-noise ratio
 - Measures the ratio of signal power to noise power in the channel
 - Signal power is the power of the data signal that encodes bits
 - Noise power is the power of the noise on fiber
Long-haul network connectivity: channel noise

1. Hartley’s law assumes an “error-less” channel
 - Computes an upper-bound on channel capacity
 - In reality, fiber adds noise

2. Signal-to-noise ratio
 - Measures the ratio of signal power to noise power in the channel
 - *Signal power* is the power of the data signal that encodes bits
 - *Noise power* is the power of the noise on fiber
 \[
 SNR = \frac{P_{signal}}{P_{noise}}
 \]
Long-haul network connectivity: channel noise

1. Hartley’s law assumes an “error-less” channel
 • Computes an upper-bound on channel capacity
 • In reality, fiber adds noise

2. Signal-to-noise ratio
 • Measures the ratio of signal power to noise power in the channel
 • Signal power is the power of the data signal that encodes bits
 • Noise power is the power of the noise on fiber
 \[
 SNR = \frac{P_{signal}}{P_{noise}}
 \]

3. SNR is often measured in decibels (dB): \[SNR_{db} = 10\log_{10}(SNR)\]
Long-haul network connectivity: channel noise

1. Hartley’s law assumes an “error-less” channel
 • Computes an upper-bound on channel capacity
 • In reality, fiber adds noise

2. Signal-to-noise ratio
 • Measures the ratio of signal power to noise power in the channel
 • *Signal power* is the power of the data signal that encodes bits
 • *Noise power* is the power of the noise on fiber
 \[SNR = \frac{P_{\text{signal}}}{P_{\text{noise}}} \]

3. SNR is often measured in decibels (dB): \(SNR_{db} = 10\log_{10}(SNR) \)
 • \(10\log_{10} \) of a quantity makes the unit decibels
Long-haul network connectivity: Shannon capacity

Shannon–Hartley Law states the max. rate at which information can be transmitted over a noisy channel

\[R = B \cdot \log_2(1 + SNR) \]

Where,

- \(R \) = data rate, bit rate in bits/second
- \(B \) = bandwidth in Hz of the channel
- \(SNR \) = signal to noise ratio (measures signal quality)

\[R \approx 0.332 \cdot B \cdot SNR \]
Long-haul network connectivity: Shannon capacity

1. Shannon–Hartley Law
 1. \[R \approx 0.332 \cdot B \cdot SNR \]

2. Fundamental limit on the capacity of a channel

3. Cannot pack more bits by
 1. Increasing modulation format
 2. Increasing symbol rate
Long-haul network connectivity: signal quality
Long-haul network connectivity: signal quality
Long-haul network connectivity: signal quality

1. Measure signal quality on a fiber over time
Long-haul network connectivity: signal quality

1. Measure signal quality on a fiber over time
2. Signal quality of a wavelength on fiber over time undergoes changes
Long-haul network connectivity: signal quality

1. Measure signal quality on a fiber over time
2. Signal quality of a wavelength on fiber over time undergoes changes
Long-haul network connectivity: signal quality

1. Measure signal quality on a fiber over time

2. Signal quality of a wavelength on fiber over time undergoes changes

Signal quality of a wavelength on fiber in North America
Long-haul network connectivity: Shannon capacity

Exercise: What is the maximum data rate that could be supported by this wavelength at the time shown by the cross if the bandwidth of the wavelength is 50GHz?

\[R = B \cdot \log_2(1 + \text{SNR}) \]

Where,

- \(R \) = data rate, bit rate in bits/second
- \(B \) = bandwidth in Hz of the channel
- \(\text{SNR} \) = signal to noise ratio (measures signal quality)

\[R \approx 0.332 \cdot B \cdot \text{SNR} \]
Long-haul network connectivity: Shannon capacity

Exercise: What is the maximum data rate that could be supported by this wavelength at the time shown by the cross if the bandwidth of the wavelength is 50GHz?

\[R = B \cdot \log_2(1 + SNR) \]

Where,

- \(R \) = data rate, bit rate in bits/second
- \(B \) = bandwidth in Hz of the channel
- \(SNR \) = signal to noise ratio (measures signal quality)

\[R \approx 0.332 \cdot B \cdot SNR \]
Long-haul network connectivity: optical fiber

Under-sea fiber

Terrestrial fiber
Long-haul network connectivity: optical fiber

Under-sea fiber

Terrestrial fiber
WANs need high infrastructure investment

1. High capital expense (billions of $)
 1. Hardware costs for switches
 2. O(100,000) miles fiber
2. High operational expenses (millions of $ annually)
3. Crucial to operate efficient WANs
Using WANs efficiently

• Allocate traffic demands in the WAN to:
 • achieve optimal network flow
 • minimal traffic latency
 • fairness across traffic classes
 • …
Using WANs efficiently

Network Topology

Demands

A → D = 100G
C → D = 100G
Using WANs efficiently

Network Topology

Demands

\[AD = 100G \]
\[CD = 100G \]
Using WANs efficiently

What does this remind me of from your algorithms class?
Using WANs efficiently

What does this remind me of from your algorithms class?

Max flow algorithms:
Ford Fulkerson, Edmond’s Karp etc.
Using WANs efficiently: traffic engineering

• Complex Objectives
 • achieve optimal network *flow*
 • minimal traffic *latency*
 • *fairness* across traffic classes
 • ...

• Traffic optimization over WANs to achieve different goals is called *traffic engineering*
Traffic engineering optimization
Traffic engineering optimization

Inputs

Optimization
Objective
Traffic engineering optimization

Inputs

Network Topology

Optimization Objective
Traffic engineering optimization

Inputs

- Network Topology
- Demand Matrix

Optimization Objective
Traffic engineering optimization

Inputs

- Network Topology
- Demand Matrix
- Network Paths

Optimization Objective
Traffic engineering optimization

Inputs

- Network Topology
- Demand Matrix
- Network Paths

Optimization Objective
Traffic engineering optimization

Inputs
- Network Topology
- Demand Matrix
- Network Paths

Outputs
- Flow Allocations

- Optimization Objective
Traffic engineering optimization

Inputs
- Network Topology
- Demand Matrix
- Network Paths

Optimization Objective

Outputs
- Flow Allocations

Constraints
Traffic engineering optimization

Inputs
- Network Topology
- Demand Matrix
- Network Paths

Constraints
- Demand Constraints

Outputs
- Flow Allocations

Optimization Objective

For the full understanding of the text, please see the PDF or document.
Traffic engineering optimization

Inputs
- Network Topology
- Demand Matrix
- Network Paths

Constraints
- Demand Constraints
- Capacity Constraints

Optimization Objective

Outputs
- Flow Allocations
Traffic engineering optimization

Inputs

- Network Topology
- Demand Matrix
- Network Paths

Outputs

- Flow Allocations

Constraints

- Demand Constraints
- Capacity Constraints
- Flow Conservation
Traffic engineering optimization

Inputs
- Network Topology
- Demand Matrix
- Network Paths

Constraints
- Demand Constraints
- Capacity Constraints
- Flow Conservation

Optimization Objective

Outputs
- Flow Allocations
Long-haul network connectivity: optical fiber

Under-sea fiber

Terrestrial fiber