A physical layer perspective on wide-area networks (WANs)

Guest lecture: Rachee Singh

CS4450: Introduction to Computer Networks
Wide-area networks

Span large geographic areas to interconnect locations across the world
Wide-area networks
A wide-area network (WAN) forms an administrative domain or an AS.
A wide-area network (WAN) forms an administrative domain or an AS.
Wide-area networks

Many WANs on the Internet that carry traffic for applications we care about.
Wide-area networks

Many WANs on the Internet that carry traffic for applications we care about.
Many WANs on the Internet that carry traffic for applications we care about.
Wide-area networks

Many WANs on the Internet that carry traffic for applications we care about.
Types of wide-area networks

ISP WANs
(Comcast, ATT)
Types of wide-area networks

ISP WANs
(Comcast, ATT)

Cloud WANs
(MSFT, Google, Meta)
Types of wide-area networks

- **ISP WANs**
 (Comcast, ATT)

- **Cloud WANs**
 (MSFT, Google, Meta)

- **Non-terrestrial WANs**
 (Loon, Starlink)
Challenges of implementing WANs

1. “long-haul” connectivity
2. High operating expenses
 - Billions of dollars to provision (capital expense)
 - Millions of dollars to maintain (operating expense)
Long-haul network connectivity
Long-haul network connectivity

1. A link in any network:
Long-haul network connectivity

1. A link in any network:
 1. A pair of routers
Long-haul network connectivity

1. A link in any network:
 1. A pair of routers
 2. Logical connection between them
1. A link in any network:
 1. A pair of routers
 2. Logical connection between them
 3. Physical connection between them
Long-haul network connectivity: basics
Long-haul network connectivity: basics

I know how to reach prefix 1.0.0.0/24
Long-haul network connectivity: basics

Let me send you traffic towards 1.0.0.0/24

I know how to reach prefix 1.0.0.0/24
Long-haul network connectivity: basics

Let me send you traffic towards 1.0.0.0/24

I know how to reach prefix 1.0.0.0/24
Long-haul network connectivity: basics

Bits in the packets are “encoded” on a signal in the physical medium.
Long-haul network connectivity: basics

Bits in the packets are “encoded” on a signal in the physical medium.
Long-haul network connectivity: basics

Bits in the packets are “encoded” on a signal in the physical medium.
Long-haul network connectivity: optical fiber

Fiber (glass) is an efficient (low loss) medium for transmitting signals.
Long-haul network connectivity: optical fiber

Fiber (glass) is an efficient (low loss) medium for transmitting signals.
Long-haul network connectivity: optical fiber
Long-haul network connectivity: optical fiber

1. Optical spectrum is the range of wavelengths in a fiber
Long-haul network connectivity: optical fiber

1. Optical spectrum is the range of wavelengths in a fiber
2. Optical spectrum of fiber is in infra-red range:

Electromagnetic spectrum
Long-haul network connectivity: optical fiber

1. Optical spectrum is the range of wavelengths in a fiber
2. Optical spectrum of fiber is in infra-red range:
 - Wavelengths above 850nm

Electromagnetic spectrum
Long-haul network connectivity: optical fiber

1. Optical spectrum is the range of wavelengths in a fiber
2. Optical spectrum of fiber is in infra-red range:
 - Wavelengths above 850nm
3. Why use infra-red signals?

![Electromagnetic spectrum](image)

- UV
- Visible
- Infrared

Wavelength (nanometers) 850 1300 1550
Long-haul network connectivity: optical fiber

1. Optical spectrum is the range of wavelengths in a fiber
2. Optical spectrum of fiber is in infra-red range:
 - Wavelengths above 850nm
3. Why use infra-red signals?
 - Lower attenuation (loss of signal) in fiber

Electromagnetic spectrum
1. Optical spectrum is the range of wavelengths in a fiber
2. Optical spectrum of fiber is in infra-red range:
 • Wavelengths above 850nm
3. Why use infra-red signals?
 • Lower attenuation (loss of signal) in fiber
4. What causes attenuation?

Electromagnetic spectrum
Long-haul network connectivity: optical fiber

1. Optical spectrum is the range of wavelengths in a fiber
2. Optical spectrum of fiber is in infra-red range:
 - Wavelengths above 850nm
3. Why use infra-red signals?
 - Lower attenuation (loss of signal) in fiber
4. What causes attenuation?
 - Scattering of light
Long-haul network connectivity: optical fiber

1. Optical spectrum is the range of wavelengths in a fiber
2. Optical spectrum of fiber is in infra-red range:
 • Wavelengths above 850nm
3. Why use infra-red signals?
 • Lower attenuation (loss of signal) in fiber
4. What causes attenuation?
 • Scattering of light
 • Absorption of light
Long-haul network connectivity: optical fiber

1. A wavelength (λ) carrying bits on fiber is a unit of signal
 - A portion of the optical spectrum
2. Frequency (f) and wavelength (λ) are used interchangeably: $\lambda = \frac{1}{f}$
3. Spacing between wavelengths to ensure signals don’t overlap at the receiver
4. 50GHz space between wavelengths, total 4THz bandwidth means 80 wavelengths on fiber (4000/50)
Long-haul network connectivity: signal modulation

1. Transmitter modulates light signals (wavelengths)
 1. Encode bits on a wave or pulse
 2. By changing the properties of the signal
2. Receiver decodes the signal to retrieve bits
3. Digital (bits n Tx) —> analog (optical signal) —> Digital (bits on Rx)
4. Example modulation format: NRZ

Non-return zero (NRZ) modulation
Long-haul network connectivity: signal modulation

1. Modulation format decides:
 1. Changes to the signal from a set of alternatives (symbols)
 2. Each symbol communicates a fixed number of bits
 3. Number of levels in a symbol = M, number of bits per symbol, \(N = \log_2 M \)

2. Symbol rate decides:
 1. number of symbols per second (baud rate)

Baud rate = 4, \(N = 2 \)
Hartley’s Law:

\[R = f_p \log_2 M \]

Where,

- \(R \) = data rate, bit rate in bits/second
- \(f_p \) = symbol rate or baud rate in symbols/second
- \(M \) = number of levels in a given symbol

Long-haul network connectivity: optical fiber

Baud rate = 4, N = 2
1. Modulation packs bits on a signal
 • Some formats pack more bits than others
2. Types of modulations
 1. Change *amplitude* of the signal
 2. Change *phase* of the signal
3. For example: Phase shift keying (PSK) modulation changes the phase of the signal.
Long-haul network connectivity: exercise

QAM: quadrature amplitude modulation uses a mix of different amplitude levels and phase shifts to create different symbols (see right).
Long-haul network connectivity: exercise

QAM: quadrature amplitude modulation uses a mix of different amplitude levels and phase shifts to create different symbols (see right).

Constellation Diagram of 16-QAM
Long-haul network connectivity: exercise

QAM: quadrature amplitude modulation uses a mix of different amplitude levels and phase shifts to create different symbols (see right).

Exercise: If the baud rate of the transmission is 50 Gbaud, what is the data rate of a wavelength modulated with 16-QAM modulation?
Long-haul network connectivity: exercise

QAM: quadrature amplitude modulation uses a mix of different amplitude levels and phase shifts to create different symbols (see right).

Hartley’s Law
\[R = f_p \log_2 M \]
Where,
R = data rate, bit rate in bits/second
\(f_p \) = symbol rate or baud rate in symbols/second
M = number of levels in a given symbol

Exercise: If the baud rate of the transmission is 50 Gbaud, what is the data rate of a wavelength modulated with 16-QAM modulation?
Long-haul network connectivity: exercise

QAM: quadrature amplitude modulation uses a mix of different amplitude levels and phase shifts to create different symbols (see right).

Hartley’s Law

\[R = f_p \log_2 M \]

Where,
- \(R \) = data rate, bit rate in bits/second
- \(f_p \) = symbol rate or baud rate in symbols/second
- \(M \) = number of levels in a given symbol

Exercise: If the baud rate of the transmission is 50 Gbaud, what is the data rate of a wavelength modulated with 16-QAM modulation?

Hint: 16-QAM has 16 levels per symbol
Long-haul network connectivity: Shannon-capacity
Long-haul network connectivity: Shannon-capacity

1. Hartley’s law assumes an “error-less” channel
Long-haul network connectivity: Shannon-capacity

1. Hartley’s law assumes an “error-less” channel
2. Computes an upper-bound on channel capacity
Long-haul network connectivity: Shannon-capacity

1. Hartley’s law assumes an “error-less” channel
2. Computes an upper-bound on channel capacity
3. In reality, signals attenuate in fiber which leads to reduced signal strength (or quality)
Long-haul network connectivity: Shannon-capacity

1. Hartley’s law assumes an “error-less” channel
2. Computes an upper-bound on channel capacity
3. In reality, signals attenuate in fiber which leads to reduced signal strength (or quality)
4. The signal quality determines channel capacity
Long-haul network connectivity: Shannon-capacity

1. Hartley’s law assumes an “error-less” channel
2. Computes an upper-bound on channel capacity
3. In reality, signals attenuate in fiber which leads to reduced signal strength (or quality)
4. The signal quality determines channel capacity
5. Example: signal quality of a wavelength on fiber over time undergoes changes
Long-haul network connectivity: Shannon-capacity

1. Hartley’s law assumes an “error-less” channel
2. Computes an upper-bound on channel capacity
3. In reality, signals attenuate in fiber which leads to reduced signal strength (or quality)
4. The signal quality determines channel capacity
5. Example: signal quality of a wavelength on fiber over time undergoes changes

Signal quality of a wavelength on fiber in North America
Long-haul network connectivity: Shannon capacity

Shannon–Hartley Law states the max. rate at which information can be transmitted over a noisy channel

\[R = B \cdot \log_2(1 + SNR) \]

Where,

- \(R \) = data rate, bit rate in bits/second
- \(B \) = bandwidth in Hz of the channel
- \(SNR \) = signal to noise ratio (measures signal quality)

\[R \approx 0.332 \cdot B \cdot SNR \]
Long-haul network connectivity: Shannon capacity

Exercise: What is the maximum data rate that could be supported by this wavelength at the time shown by the cross if the bandwidth of the wavelength is 50GHz?

Where,

\[R = B \cdot \log_2(1 + SNR) \]

Where,

- \(R \) = data rate, bit rate in bits/second
- \(B \) = bandwidth in Hz of the channel
- \(SNR \) = signal to noise ratio (measures signal quality)

\[R \approx 0.332 \cdot B \cdot SNR \]
Long-haul network connectivity: optical fiber

Under-sea fiber

Terrestrial fiber
WANs need high infrastructure investment

1. High capital expense (billions of $)
 1. Hardware costs for switches
 2. O(100,000) miles fiber

2. High operational expenses (millions of $ annually)

3. Crucial to operate efficient WANs