CS4450

Computer Networks: Architecture and Protocols

Lecture 6
Data Link Layer

Rachit Agarwal
Announcements

• Exam 1 on 09/21
 • Material: everything covered until Wed lecture
 • Slides, Problem set 1, Problem set 2 (up to Question 4)
 • Infinite time, should be doable in ~90 minutes
 • Open-notes, open-book, open-Internet, open-everything, except...
 • Talking to any human or alien

• Exam structure
 • Several conceptual questions
 • Several “problems” (e.g., Q1 and Q2 on pset 2 were in past exams)

• For all those who declared their conflicts
 • We have already sent an email; please respond by tomorrow
 • If we missed you, meet me after the lecture today
Announcements

LOST sessions

• There seems to be some confusion

• LOST sessions should not be your “first” option
 • Not meant to provide you with exclusive TAs all the time

• Office hours and Ed Discussions are your first options
 • If you are still feeling LOST, then ask for one

• When you send a request for the LOST session
 • Tell us what you have tried before requesting a session

• As noted on the website, no LOST sessions 1 week prior to exams
Context for Today’s Lecture

• You now understand
 • Network sharing (in depth)
 • Architectural principles (in depth)
 • Design goals for the Internet (& computer networks, in depth)
 • End-to-end working of the Internet (at a high-level)

• Now, time to dive deeper:
 • Link Layer (~1 week)
 • Network Layer (~4 weeks)
 • Transport Layer (~3 weeks)

• Today: Link layer
Goals for Today’s Lecture

- Link layer:
 - Broadcast medium
 - Sharing broadcast medium
 - Carrier Sense Multiple Access - Collision Detection (CSMA/CD)
Data Link Layer
Two types of communication mediums

- **Point-to-point**
 - The high-level ideas discussed so far were for point-to-point
- **Broadcast**
 - Original design of Link layer protocols
 - More recent versions have moved to point-to-point
 - We will discuss why so!

Network Adapters (e.g., NIC — network interface card)

- The hardware that connects a machine to the network
- Has a “name” — MAC (Medium access control) address
Point-to-Point vs. Broadcast Medium

- **Point-to-point**: dedicated pairwise communication
 - E.g., long distance fiber link
 - E.g., Point-to-point link between two routers

- **Broadcast**: shared wire or medium
 - Traditional Link Layer (Ethernet)
 - 802.11 wireless LAN
Data Link Layer: Broadcast (until ~2000s)

- Ever been to a party?
 - Tried to have an interesting discussion?
- Fundamental challenge?
 - Collisions
Broadcast Medium: Desirable properties

- One and only one: data delivery
- How do we design a broadcast medium protocol for data delivery?

source

NIC NIC

link-layer “protocol”

destination

NIC
Where it all Started: AlohaNet

- **Norm Abramson:**
 - Left Stanford in 1970
 - So he could SURF
 - Set up first data communication system for Hawaiian islands
 - Central hub at University of Hawaii, Oahu
Aloha Signaling

- Two channels: random access, broadcast

- Sites send packets to hub
 - Random access channel
 - Each site transmits packets at “random” times
 - If a packet not received (due to collision), site resends

- Hub sends packets to all sites
 - Broadcast channel
 - Sites can receive even if they are also sending

- **Challenge: Requires a centralized hub**
 - If the hub fails, the entire network fails
 - Not always a good design (remember the design goals?)
Sharing a broadcast channel

- **Context:** a shared broadcast channel
 - Must avoid/handle having multiple sources speaking at once
 - Otherwise collisions lead to garbled data
 - Need **distributed algorithm** for sharing channel
 - Algorithm determines **when** and **which** source can transmit

- **Three classes of techniques**
 - **Frequency-division multiple access:** divide channel into pieces
 - **Time-division multiple access:** divide channel into time slots
 - **Random access:** allow uncoordinated access
 - Detect collisions, and if needed, recover from collisions
 - More in the Internet style!
Frequency-Division Multiple Access (FDMA)

- Frequency sharing
 - Divide the channel into frequencies
 - Every source is assigned a subset of frequencies
 - And transmits data only on its assigned frequency

- Goods: no collisions

- Not-so-good:
 - A source may have nothing to send (frequency wasted)
 - Interference may cause disruption
 - Hard to implement for wired networks

- Used in many wireless networks
 - E.g., radio
Time-Division Multiple Access (TDMA)

- **Time sharing**
 - Divide time into *slots*
 - Divide data into *frames*
 - Such that a frame can be transmitted in one slot
 - **Every source is assigned a subset of slots**
 - And transmits a frame only in its assigned slot

- **Goods: no collisions**

- **Not-so-good: Underutilization of resources**
 - During a slot, a source may have nothing to send
 - When the source has something to send, wait for its slot
Random Access

- **Bob Metcalfe:**
 - Xerox PARC
 - Visits Hawaii, and gets the idea
 - Shared wired medium
Life lesson:
If you want to invent great things,
go to Hawaii :-}
Link Layer (Media Access Control, or MAC) Protocol

- When source has a frame to send
 - Transmit at full bandwidth
 - No a priori coordination among nodes

- Two or more transmitting sources => collision
 - Frame lost

- Link-layer protocol specifies:
 - How to detect collision
 - How to recover from collisions
LETS TRY!

Multiple source-destination pairs
Design a protocol that allows sharing the broadcast medium

source1
Adapter

source2
Adapter

destination
Adapter

link-layer “protocol”
CSMA (Carrier Sense Multiple Access)

- **CSMA:** *listen* before transmit
 - If channel sensed idle: transmit entire frame
 - If channel sensed busy: defer transmission

- Human analogy: don’t interrupt others!

- Does this eliminate all collisions?
 - **No,** because of nonzero propagation delay

- Solution:
 - Include a **Collision Detection (CD)** mechanism
 - If a collision detected
 - Retransmit
CSMA/CD (Carrier Sense Multiple Access, Collision Detection)

- CSMA/CD: carrier sensing
 - Collisions detected within short time
 - Colliding transmissions aborted, reducing wastage

- Collision detection easy in wired (broadcast) LANs
 - Compare transmitted and received signals

- Collision detection difficult in wireless LANs
Once a collision is detected ...

- **When should the frame be resent?**

- Immediately?
 - Every NIC would start sending immediately
 - Collision again!

- Take turns?
 - Back to time division multiplexing
CSMA/CD in one slide!

- **Carrier Sense**: continuously listen to the channel
 - If idle: start transmitting
 - If busy: wait until idle

- **Collision Detection**: listen while transmitting
 - No collision: transmission complete
 - Collision: abort transmission; send jam signal

- **Random access**: exponential back off
 - After collision, transmit after “waiting time”
 - After k collisions, choose “waiting time” from \(\{0, \ldots, 2^{k-1}\} \)
 - Exponentially increasing waiting times
 - But also, exponentially larger success probability
CSMA/CD (Collision Detection): An example

Attempt 1: Suppose a collision happens

Attempt 2: Four possibilities
Success with Probability = 0.5
What is the success probability in attempt 3?

Answer: 0.75
Performance of CSMA/CD

• Time spent transmitting a frame (collision)
 • Proportional to distance d; why?

• Time spent transmitting a frame (no collision)
 • Frame length p divided by bandwidth b

• Rough estimate for efficiency (K some constant)

\[
E \sim \frac{p}{b + Kd}
\]

• Observations:
 • For large frames AND small distances, $E \sim 1$
 • Right frame length depends on b, K, d
 • As bandwidth increases, E decreases
 • That is why high-speed LANs are switched
Evolution

- **Ethernet was invented as a broadcast technology**
 - Hosts share channel
 - Each packet received by all attached hosts
 - CSMA/CD

- **Current Ethernets are “switched” (next lecture)**
 - Point-to-point medium between switches;
 - Point-to-point medium between each host and switch
 - No sharing, no CSMA/CD