CS4450

Computer Networks:
Architecture and Protocols

Rachit Agarwal
Today’s lecture: 10 basic questions

1. What do I mean by “computer networks”?

2. What do computer networks do?

3. What do computer networks look like?

4. Why study computer networks?

5. What is this course about?

6. What is the course workload, grading policies, etc.?

7. How will this course be organized?

8. Who am I?

9. How do I teach?

10. Is CS4450 the right class for you?
#1: What do I mean by “computer networks”?
What is a computer network?

A set of network elements connected together, that implement a set of protocols for the purpose of sharing resources at the end hosts

• **Three important components:**
 • **Core infrastructure:**
 • A set of network elements connected together
 • **Protocols:**
 • Needed to use the network
 • **Purpose:**
 • Sharing resources at the end hosts (computing devices)
What is a computer network?

A set of network elements connected together, that implement a set of protocols for the purpose of sharing resources at the end hosts.
What is a computer network?

A set of network elements connected together, that implement a set of protocols for the purpose of sharing resources at the end hosts

• Three important components:
 • Core infrastructure:
 • A set of network elements connected together
 • Protocols:
 • Needed to use the network
 • Purpose:
 • Sharing resources at the end hosts (computing devices)
Questions?
#2: What do computer networks do?
What do computer networks do?

A computer network delivers data between the end points

- One and only one task: Delivering the data
- Read that sentence again. Remember it forever.

This delivery is done by:

- Chopping the data into packets
- Sending individual packets across the network
- Reconstructing the data at the end points

That is all! This course:

- Evolution of three components of computer networks!
 - Infrastructure, protocols, purpose
- Why has it taken 40 years of research (and counting) to design a data delivery system
Data delivery as a fundamental goal

- Support the logical equivalence of Interprocess Communication (IPC)
 - Mechanism for “processes on the same host” to exchange messages

- Computer networks allow “processes on two different hosts” to exchange messages

- Clean separation of concerns
 - Computer networks deliver data
 - Applications running on end hosts decide what to do with the data

- Keeps networks simple, general and application-agnostic
Questions?
#3: What do computer networks look like?
What do computer networks look like?

Three Basic pieces in the core infrastructure

- **End hosts**: they send/receive packets
- **Switches/Routers**: they forward packets
- **Links**: connect end hosts to switches, and switches to each other
What do computer networks look like?

End hosts, switches/routers, links
#4: Why study computer networks?
Why study computer networks?

What would the world look like without the Internet?

• Let's see
Why study computer networks?

#1: Has transformed and more importantly, is transforming everything!

- **Industry:** core enabler of many large and influential companies
 - Google, Facebook, Apple, Cisco, Broadcom, AT&T, Verizon, Akamai
- **Communication**
 - Email, messenger, phones, VoIP, ...
- **Travel**
 - AirBnB, Uber, Maps, ...
- **Health**
 - Digital health, remote diagnostics, ...
- **Entertainment**
 - Netflix, news
- **Relationships**
 - Okcupid, Tinder, ...
Why study computer networks?

#2: To learn how to design for tussle!

• Federated System
 • The Internet interconnects different networks (>18000 ISPs)
 • How do you interconnect distrustful and competing entities?
 • Constant tussle between business and technical factors!
Why study computer networks?

#3: To learn how to design for **scale**!

- **Tremendous scale**
 - 51% of world population
 - 1.24 trillion unique web pages
 - Every **second**, approximately
 - > 2 million emails
 - > 40000 Google search queries
 - > 6000 Tweets

- **Introduced the phrase** “Internet Scale”
Why study computer networks?

#4: To learn how to design for *diversity*!

- **Communication latency:** Microseconds to seconds
- **Bandwidth:** 1 Kilobits/second to 100 Gigabits/second
- **Packet Loss:** 0-90%
- **Technology:** Wireless, satellite, optical, copper, ...
- **End hosts:** Sensors, cell phones, computers, servers, datacenters, ...
- **Applications:** *www*, voice, video, gaming, remote medicine
- **Trust models:** selfish (users), malicious (attackers), greedy (companies), ...

And yet, everything needs to work in tandem!
Why study computer networks?

#5: To learn how to design for evolution!

<table>
<thead>
<tr>
<th></th>
<th>1970</th>
<th>Today</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bandwidth</td>
<td>50 kbps</td>
<td>100+ Gbps</td>
</tr>
<tr>
<td>#End hosts</td>
<td>< 100 computers</td>
<td>8 billion +</td>
</tr>
<tr>
<td>Applications</td>
<td>Telnet and File transfer</td>
<td>!!</td>
</tr>
</tbody>
</table>

We have no clue what 2025 would be like!
Why study computer networks?

#6: To learn how to think “architecture rather than engineering”!

- The early pioneers came up with a solution that has lasted for 40 years!
 - Almost unchanged!!! A true success story of “thinking differently”!!
 - Brilliant in conception; sometimes weak in execution
- Several architectural principles emerged
 - Decentralization [All lectures]
 - “Packets” [Lecture #2]
 - Statistical multiplexing [Lecture #2]
 - The end-to-end principle [Lecture #3, #6+]
 - Layering [Lecture #3, #6+]
 - Best effort service [Lecture #4, #6+]
 - Narrow waist interface [Lecture #6]
Why study computer networks?

#6: To learn how to think “architecture rather than engineering”!

• The early pioneers came up with a solution that has lasted for 40 years!
 • Almost unchanged!!! A true success story of “thinking differently”!!
 • Brilliant in conception; sometimes weak in execution
 • Several architectural principles emerged

Computer networks offer us a lesson on how to “reason” through the design of a complex, diverse, ever-evolving, failure-prone system
 • What are our goals and constraints? How to prioritize them?
 • How do we decompose a problem into smaller components?
 • How to partition the functionality across multiple components?
 • What are the design tradeoffs?

In short, how to architect a system!
#5: What is this course about?
What is this course not about?

• There are many kinds of computer networks (and technologies)
 • Telephone (landline) networks
 • Cellular networks
 • Wireless networks
 • Optical networks
 • Infiniband
 •

• And many applications of these computer networks
 • World Wide Web
 • Multimedia streaming
 • Social networks
 • Email/audio/video messaging
 • Search
 •
What is this course about?

Architectural principles, design goals and performance objectives in wired networks

• What tasks get done?
 • What is delivered (packets, files, ...)?
 • What are the semantics (reliability, ordering, ...)?

• Where do tasks get done?
 • At the network elements? At the end-hosts?
 • How do end hosts interface with network elements?
 • How do different network elements interface with each other?

• How tasks get done?
 • What protocols and algorithms do each of these use?
 • How to achieve various performance objectives (latency, etc.)?
What is this course about?

Architectural principles, design goals and performance objectives in wired networks

• Mostly drawing examples from the Internet
 • Not a particular kind of network
 • Not just another technology on the list
 • Ties different networks together

• Why Internet?
 • Has similar goals as individual network technologies
 • Speed, Cost, Reliability, ...
 • Has an additional fundamental goal
 • Ability to connect all computer networks (and technologies)
 • Leads to myriad of new challenges
Questions?
#6: What is the course workload, grading policies, etc.?
Course workload [Grade1]

- Problem set, one every ~two weeks (0%)
 - For you to practice questions; solutions available after one week

- Four projects (0%)
 - To gain hands-on experience for people who are interested

- In-class surprise quizzes (20%)
 - There may be no quiz, or there may be a quiz per lecture
 - Pay attention, regularly read material, attend lectures

- Two prelims (40%), one final (35%)

- Class feedback (5%)
Course workload [Grade 2]

• Problem set, one every two weeks (0%)
 • For you to practice questions; solutions available after one week

• Four projects (0%)
 • To gain hands-on experience for people who are interested

• Two prelims (50%), one final (45%)

• Class feedback (5%)
Course Grade

• We will do two grades
 • One each from the last two slides
 • After dropping 10% of your weakest grade (quizzes/prelims/final)
 • Take the best of the two

• No curve-based grading: I am perfectly happy giving everybody an A+

<table>
<thead>
<tr>
<th>Grade</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>A+</td>
<td>96-100</td>
</tr>
<tr>
<td>A</td>
<td>91-95</td>
</tr>
<tr>
<td>A-</td>
<td>86-90</td>
</tr>
<tr>
<td>B+</td>
<td>81-85</td>
</tr>
<tr>
<td>B</td>
<td>76-80</td>
</tr>
<tr>
<td>B-</td>
<td>71-75</td>
</tr>
<tr>
<td>C+</td>
<td>66-70</td>
</tr>
<tr>
<td>C</td>
<td>61-65</td>
</tr>
<tr>
<td>C-</td>
<td>51-60</td>
</tr>
<tr>
<td>D+</td>
<td>41-50</td>
</tr>
<tr>
<td>D</td>
<td>31-40</td>
</tr>
<tr>
<td>D-</td>
<td>21-30</td>
</tr>
<tr>
<td>F</td>
<td>0-20</td>
</tr>
</tbody>
</table>
Course workload

- **My courses tend to be “heavy”: require **regular attention****
 - You have been warned!

- **My exams tend to be hard**
 - For those who miss lectures and do not care about problem sets!
 - But easy for people who attend lectures and solve problem sets.
 - You have been warned!

- **Quizzes will be simple**
 - Pay attention, regularly read material, attend lectures
 - Solve problem sets regularly
#7: How will this course be organized?
Course organization

• Prerequisites
 • This is a senior-level course
 • We expect knowledge of OS, algorithms, probability, algebra
 • Review your past courses as needed

• Textbook
 • Computer Networks: A systems approach
 • 5th edition, but others are fine too (translate sections, etc.)
 • We will not follow its order of presentation
 • Instead, use it as a reference for individual topics
 • e-version of the book available via Cornell library

• Advanced readings
 • If you get curious about a topic and want to read more
 • Anything not covered in the class will not be in exams/quizzes
Interaction with course staff

• Piazza, or Ed Discussions (see survey)
 • Not a substitute for classes

• Office hours
 • We want to choose timings that suit you (see survey)
 • We will announce office hours (time/location) in a week
 • More hours by appointment

• LOST sessions
 • We understand that students sometime lose track of the course
 • Spend the rest of the semester “catching up”
 • Send us an email; we’ll help you catch up in 1-1 sessions
 • No need to give us a proof; we are here to help
 • But we will keep track to avoid abuse
 • Secure, private email address: cs4450lost@gmail.com
5 minute break
#8: Who am I?
Instructor — Rachit Agarwal

• Assistant Professor, starting Fall 2016

• Previously: UC Berkeley, UIUC

• Office: 411c, Gates Hall

• Proud of: my students
 • Three PhD students
 • One MS student
 • Three postdocs (Mina, Jaehyun, Ali)
 • Graduated six students so far
 • 1x now Yale Assistant Professor
 • 3x now MIT PhD (Alana Marzoev, Akshay Narayan, Yannan Wu)
 • 2x now UC Berkeley PhD (Lloyd Brown, Zongheng Yang)
Instructor — Rachit Agarwal

• **Research interests:** problems that excite me
 • Publish in top conferences of several areas:
 • Operating systems (OSDI)
 • Networking (NSDI, SIGCOMM)
 • Databases (SIGMOD)
 • Theory (SODA)
 • Information Theory (ISIT)
 • Diversity reflects my learning and teaching style!
 • Competitive advantage: ignorance (and curiosity)!

• **Non-research interests:**
 • Food: Chocolate
 • Activity: Flying planes (still training; rarely get time)
 • Skill: Mixing cocktails
 • Sleep: 2-3 hours (so, expect Piazza answers at random hours)
#10: Is CS4450 the right course for you?
Ask yourself four questions...

• Agree with the contract?
 • No violation to the agreement

• Want to understand the “concepts” and the “why” of networking?
 • Not just looking for definitions, techniques and pseudo-codes

• Willing to work regularly
 • Attend lectures regularly
 • Work on problem sets regularly

• Ready to have fun?
If you decide to stay ...

Announcements

• The webpage is up

• Read the webpage for course policies, etc.

• Please fill out the survey (canvas)
If you decide to stay ...

Next lecture

• The beautiful concept of packets and flows

• Why packets and flows?

• What is statistical multiplexing?

• How long does it take for a packet to go from its source to destination?