CS4450

Computer Networks: Architecture and Protocols

Lecture 13
Distance-vector, Internet,
Addressing, Path-Vector (BGP)

Rachit Agarwal

Announcements

- Prelim: 28th March, In-class (Confirmed)
 - Nobody should be in conflict
- During my first lecture, I promised you:
 - I care about you(r learning)!
 - If you stick to the contract, I'll bring my A game in every lecture!
- You have been great so far!
- I will stick to my promise
 - We are almost half-way through
 - If you think I am not bringing my A-game in the course
 - I want to know and improve!!!
 - Please fill out the mid-term evaluation (this weekend)
 - Completely anonymized; only for my eyes; max 5 min

Goals for Today's Lecture

- Finish Distance-Vector Protocol
- Internet Addressing
- Begin Border-Gateway Protocol (BGP)

Recap from last lecture

Recap: Three flavors of protocols for producing valid routing state

- Create Tree, route on tree
 - E.g., Spanning tree protocol (switched Ethernet)
 - Good: easy, no (persistent) loops, no dead ends
 - Not-so-good: unnecessary processing, high latency, low bandwidth
- Obtain a global view:
 - Link state
 - Good: conceptually simple, no (persistent) loops, no dead ends
 - Not-so-good: flooding of link state to every node
- Distributed route computation:
 - Distance-vector protocol

Recap: Distance Vector Protocol

- Messages (Y,d,X): For root Y; From node X; advertising a distance d to Y
- Initially each switch X initializes its routing table to (X,0,-) and distance infinity to all other destinations
- Switches announce their entire distance vectors (routing table w/0 next hops)
- Upon receiving a routing table from a node (say X), each node does:
 - For each destination Y in the announcement (distance(X, Y) = d):
 - If current_distance_to_Y > d + cost of link to X:
 - update current_distance_to_Y = d
 - update next_hop_to_destination = X
- If shortest distance to any destination changed, send all neighbors your distance vectors

Recap: Lets run the Protocol again on this example (with distance vectors)

	distance	next-hop
1	0	-
2	infinity	
3	infinity	

	distance	next-hop
1	infinity	
2	0	-
3	infinity	

	distance	next-hop
1	infinity	
2	infinity	
3	0	-

	distance	next-hop
1	0	-
2	2	2
3	1	3

	distance	next-hop
1	2	1
2	0	-
3	7	3

	distance	next-hop
1	1	1
2	7	2
3	0	-

	distance	next-hop
1	0	-
2	2	2
3	1	3

	distance	next-hop
1	2	1
2	0	-
3	3	1

	distance	next-hop
1	1	1
2	3	1
3	0	-

	distance	next-hop
1	0	-
2	2	2
3	1	3

	distance	next-hop
1	2	1
2	0	-
3	3	1

	distance	next-hop
1	1	1
2	3	1
3	0	-

From Algorithm to Protocol

- Algorithm:
 - Nodes use Bellman-Ford to compute distances
- Protocol
 - Nodes exchange distance vectors
 - Update their own routing tables
 - And exchange again...
 - Details: when to exchange, what to exchange, etc....

Other Aspects of Protocol

- When do you send messages?
 - When any of your distances d(u,v) change
 - What about when c(u,v) changes?
 - Periodically, to ensure consistency between neighbors
- What information do you send?
 - Could send entire vector
 - Or just updated entries
- Do you send everyone the same information
 - Consider the following slides

One detail about Distance Vector:
Handling Count-to-Infinity Problem

Three node network

	distance	next-hop
1	0	-
2	2	2
3	1	3

	distance	next-hop
1	1	1
2	3	1
3	0	-

Three node network

	distance	next-hop
1	0	-
2	infinity	
3	1	3

	distance	next-hop
1	1	1
2	3	1
3	0	-

	distance	next-hop
1	0	-
2	4	3
3	1	3

	distance	next-hop
1	1	1
2	3	1
3	0	-

	distance	next-hop
1	0	-
2	4	3
3	1	3

	distance	next-hop
1	1	1
2	5	1
3	0	-

	distance	next-hop
1	0	-
2	6	3
3	1	3

	distance	next-hop
1	1	1
2	5	1
3	0	-

	distance	next-hop
1	0	-
2	6	3
3	1	3

COUNT-TO-INFINITY problem!!!!

	distance	next-hop
1	1	1
2	7	1
3	0	-

Count-to-infinity problem

	distance	next-hop
1	0	-
2	6	3
3	1	3

Not just due to failures: Can happen with changes in cost!

	distance	next-hop
1	1	1
2	7	1
3	0	-

How Can You Fix This?

- Do not advertise a path back to the node that is the next hop on the path
 - Called "split horizon"
 - Telling them about your entry going through them
 - Doesn't tell them anything new
 - Perhaps misleads them that you have an independent path
- Another solution: if you are using a next-hop's path, then:
 - Tell them not to use your path (by telling them cost of infinity)
 - Called "poisoned reverse"
- More in Problem Set 3

Convergence

- Distance vector protocols can converge slowly
 - While these corner cases are rare
 - The resulting convergence delays can be significant

Comparison of Scalability

Link-State:

- Global flood: each router's link-state (#ports)
- Send it once per link event, or periodically

Distance Vector:

- Send longer vector (#dest) just to neighbors
 - But might end up triggering their updates
- Send it every time DV changes (which can be often)

• Tradeoff:

- LS: Send it everywhere and be done in predictable time
- DV: Send locally, and perhaps iterate until convergence

End of Distance-vector Routing Now you know just as much as my PhD students :-)

Internet Addressing

Addressing so far

- Each node has a "name"
 - We have so far worked only with names
 - Assumed that forwarding/routing etc. done on names
- Today:
 - Why do we need addresses?
 - Why do we assign addresses the way we assign addresses?

Three requirements for addressing

- Scalable routing
 - How must state must be stored to forward packets?
 - How much state needs to be updated upon host arrival/departure?
- Efficient forwarding
 - How quickly can one locate items in routing table?
- Host must be able to recognize packet is for them

Layer 2 (link layer): "Flat" Addressing

- Uses MAC address
 - "Names", remember? Used as identifier
- Unique identifiers hardcoded in the hardware
 - No location information
- Local area networks route on these "flat" addresses
 - Spanning Tree Protocol runs on switches and hosts
 - Each switch stores a separate routing entry for each host
 - End-hosts store nothing
- Upon receiving a packet, an end-host:
 - Puts destination's and its own MAC address in the header
 - Forwards it to the switch it is connected to
- Destination is able to recognize the packet is for them using address

How does this meet our requirements?

- Scalable routing
 - How much state to forward packets?
 - One entry per host per switch
 - How much state updated for each arrival/departure?
 - One entry per host per switch
- Efficient forwarding
 - Exact match lookup on MAC addresses (exact match is easy!)
- Host must be able to recognize the packet is for them
 - MAC address does this perfectly

Conclusion: L2 addressing does not enable scalable routing

How would you scale L2?

- Suppose we want to design a much larger L2 network
- Must use MAC address as part of the address
 - Only way host knows that the packet is for them
- But how would you enable scalable routing?
 - Small #routing entries (less than one entry per host per switch)
 - Small #updates (less than one update per switch per host change)

One possible Solution: Towards Internet-scale addressing

- Assign each end-host an addresses of the form Switch:MAC
- Spanning Tree Protocol runs only on switches
 - So, each switch has one entry per switch (rather than per host)
- Upon receiving a packet, an end-host:
 - Puts destination's and its own Switch:MAC address in the header
 - Forwards it to the switch it is connected to
- Switches forward the packet using first part of the address
- Destination is able to recognize the packet is for them using second part of the address

Layer 3: Hierarchical addressing

- Routing tables cannot have entry for each switch in the Internet
- Use addresses of the form Network:Host
- Routers know how to reach all networks in the world
 - Routing algorithms only announce "Network" part of the addresses
 - Routing tables now store a next-hop for each "network"
- Forwarding:
 - Routers ignore host part of the address
 - When the packet reaches the right network
 - Packet forwarded using Host part of the address
 - Using Layer 2
- This was the original IP addressing scheme

What do I mean by "network"

- In the original IP addressing scheme ...
 - Network meant an L2 network
 - Often referred to as a "subnet"
 - There are too many of them now to scale

Aggregation

- Aggregation: single forwarding entry used for many individual hosts
- Example:
 - In our scalable L2 solution: aggregate was switch
 - In our scalable L3 solution: aggregate was network
- Advantages:
 - Fewer entries and more stable
 - Change of hosts do not change tables
 - Don't need to keep state on individual hosts

Hierarchical Structure

- The Internet is an "inter-network"
 - Used to connect networks together, not hosts
- Forms a natural two-way hierarchy
 - Wide Area Network (WAN) delivers to the right "network"
 - Local Area Network (LAN) delivers to the right host

Hierarchical Addressing

- Can you think of an example?
- Addressing in the US mail
 - Country
 - City, Zip code
 - Street
 - House Number
 - Occupant "Name"

IP addresses

- Unique 32 bit numbers associated with a host
- Use dotted-quad notation, e.g., 128.84.139.5

Country	City, State	Street, Number	Occupant
(8 bits)	(8 bits)	(8 bits)	(8 bits)
1000000	0-1010100	10001011	00000-101
128	84	139	5

Network

Original Addressing mechanism

- First eight bits: network address (/8)
 - Slash notation indicates network address
- Last 24 bits: host address
- Assumed 256 networks were more than enough!!!
 - Now we have millions!

Suppose we want to accommodate more networks

- We can allocate more bits to network address
- Problem?
 - Fewer bits for host names
 - What if some networks need more hosts?

Today's Addressing: CIDR

- Classless Inter-domain Routing
- Idea: Flexible division between network and host addresses
- Prefix is network address
- Suffix is host address
- Example:
 - 128.84.139.5/23 is a 23 bit prefix with:
 - First 23 bits for network address
 - Next 9 bits for host addresses: maximum 2^9 hosts
- Terminology: "Slash 23"

Example for CIDR Addressing

• 128.84.139.5/23 is a 23 bit prefix with 2^9 host addresses

1000000	0-1010100	10001011	00000-101
128	84	139	5
	Network (23 bits)		Host (9 bits)

Allocating addresses

- Internet Corporation for Assigned Names and Numbers (ICANN) ...
- Allocates large blocks of addresses to Regional Internet Registries
 - E.g., American Registry for Internet Names (ARIN) ...
- That allocates blocks of addresses to Large Internet Service Providers (ISP)
- That allocate addresses to individuals and smaller institutions
- Fake example:
 - ICANN -> ARIN -> AT&T -> Cornell -> CS -> Me

Allocating addresses: Fake example

- ICANN gives ARIN several /8s
- ARIN given AT&T one /8, **128.0/8**
 - Network prefix: 10000000
- AT&T gives Cornell one /16, 128.84/16
 - Network prefix: 10000000 01010100
- Cornell gives CS one /24, 128.84.139/24
 - Network prefix: 10000000 01010100 10001011
- CS given me a specific address 128.84.139.5
 - Network prefix: 10000000 01010100 10001011 00000101

How does this meet our requirements?

- To understand this, we need to understand the routing on the Internet
- And to understand that, we need to understand the Internet

Back to the basics: what is a computer network?

A set of network elements connected together, that implement a set of protocols for the purpose of sharing resources at the end hosts

What does a computer network look like?

What does a computer network look like?

Autonomous Systems (AS)

- An AS is a network under a single administrative control
 - Currently over 30,000
 - Example: AT&T, France Telecom, Cornell, IBM, etc.
 - A collection of routers interconnecting multiple switched Ethernets
 - And interconnections to neighboring ASes
- Sometimes called "Domains"
- Each AS assigned a unique identifier
 - 16 bit AS number

IP addressing -> Scalable Routing?

IP addressing -> Scalable Routing?

Can add new hosts/networks without updating the routing entries at France Telecom

IP addressing -> Scalable Routing?

ESNet must maintain routing entries for both a.*.*.* and a.c.*.*

Administrative Structure Shapes Inter-domain Routing

- ASes want freedom to pick routes based on policy
 - "My traffic can't be carried over my competitor's network!"
 - "I don't want to carry A's traffic through my network!"
 - Cannot be expressed as Internet-wide "least cost"
- ASes want autonomy
 - Want to choose their own internal routing protocol
 - Want to choose their own policy
- ASes want privacy
 - Choice of network topology, routing policies, etc.

Choice of Routing Algorithm

- Link State (LS) vs. Distance Vector (DV)
- LS offers no privacy broadcasts all network information
- LS limits autonomy need agreement on metric, algorithm
- DV is a decent starting point
 - Per-destination updates by intermediate nodes give us a hook
 - But, wasn't designed to implement policy
 - ... and is vulnerable to loops if shortest paths not taken

The "Border Gateway Protocol" (BGP) extends Distance-Vector ideas to accomodate policy

Business Relationships Shape Topology and Policy

- Three basic kinds of relationships between ASes
 - AS A can be AS B's customer
 - AS A can be AS B's provider
 - AS A can be AS B's peer

- Business implications
 - Customer pays provider
 - Peers don't pay each other
 - Exchange roughly equal traffic

Business Relationships

Relations between ASes

provider ------ customer peer peer

Business Implications

- Customers pay provider
- Peers don't pay each other

Why Peer?

E.g., D and E talk a lot

Peering saves
B and C money

Relations between ASes

provider ----- customer peer ----- peer

Business Implications

- Customers pay provider
- Peers don't pay each other

Routing Follows the Money

- ASes provide "transit" between their customers
- Peers do not provide transit between other peers

Routing Follows the Money

 An AS only carries traffic to/from its own customers over a peering link

Inter-domain Routing: Setup

- Destinations are IP prefixes (12.0.0.0/8)
- Nodes are Autonomous Systems (ASes)
 - Internals of each AS are hidden
- Links represent both physical links and business relationships
- BGP (Border Gateway Protocol) is the Interdomain routing protocol
 - Implemented by AS border routers

BGP

Sound familiar?

BGP Inspired by Distance Vector

Per-destination route advertisements

No global sharing of network topology

Iterative and distributed convergence on paths

But, four key differences

(1) BGP does not pick the shortest path routes!

BGP selects route based on policy, not shortest distance/least cost

How do we avoid loops?

(2) Path-vector Routing

- Idea: advertise the entire path
 - Distance vector: send distance metric per dest. d
 - Path vector: send the entire path for each dest. d

Loop Detection with Path-Vector

- Node can easily detect a loop
 - Look for its own node identifier in the path
- Node can simply discard paths with loops
 - e.g. node 1 sees itself in the path 3, 2, 1

(2) Path-vector Routing

- Idea: advertise the entire path
 - Distance vector: send distance metric per dest. d
 - Path vector: send the entire path for each dest. d

- Benefits
 - Loop avoidance is easy
 - Flexible policies based on entire path

(3) Selective Route Advertisement

 For policy reasons, an AS may choose not to advertise a route to a destination

As a result, reachability is not guaranteed even if the graph is connected

Example: AS#2 does not want to carry traffic between AS#1 and AS#3

(4) BGP may aggregate routes

For scalability, BGP may aggregate routes for different prefixes

BGP Outline

- BGP Policy
 - Typical policies and implementation
- BGP protocol details
- Issues with BGP

Policy:

Imposed in how routes are selected and exported

- Selection: Which path to use
 - Controls whether / how traffic leaves the network
- Export: Which path to advertise
 - Controls whether / how traffic enters the network

Typical Selection Policy

- In decreasing order of priority:
 - Make or save money (send to customer > peer > provider)
 - 2. Maximize performance (smallest AS path length)
 - 3. Minimize use of my network bandwidth ("hot potato")
 - 4. ...

Typical Export Policy

Destination prefix advertised by	Export route to
Customer	Everyone (providers, peers, other customers)
Peer	Customers
Provider	Customers

Known as the "Gao-Rexford" rules

Capture common (but not required!) practice