

Prelim Review

CS 4450 (Spring 2018)

Vishal Shrivastav, Cornell University

Big Picture

How to send data from point A to point B?

Characterizing a network link

- Bandwidth Number of bits you can send per unit time
- Latency Time it takes for a bit to reach the other end
 - Transmission delay

Packet size

Link bandwidth

• Propagation delay

Link length

Speed of propagation

A little bit closer to reality...

• What happens if A sends faster than C could transmit?

- Queuing delay
 - Time to transmit all the packets in front in the queue

In reality...

Let's break things down a bit...

Two ways to share the network...

Circuit switching

 Reserve the resources before sending the data

Pros

Predictable performance Reliable delivery Simple forwarding

Cons

Resource underutilization Connection set up overheads

Packet switching

- On-demand resource reservation
- Packets carry data + header

Pros

Efficient resource utilization No set-up cost

Cons

Unpredictable performance Best effort delivery Header overhead Complex forwarding

Implementing network sharing: Layering

- Divide the tasks of a network into separate modules
- Bits on wire (Physical)
- Deliver packets to hosts across local network (Datalink)
- Deliver packets to host across networks (Network)
- Deliver packets reliably, to correct process (Transport)
- Do something with the data (Application)

Datalink Layer

How to exchange data within a local network?

Datalink Layer

- Point-to-Point: **dedicated** pairwise communication
 - E.g., long distance fiber link
 - E.g., Point-to-Point link between two routers
- Broadcast: **shared** wire or medium
 - A HUB (traditional Ethernet)
 - 802.11 wireless LAN
- Each end host has a unique "name" (MAC address)

Broadcast Medium

- A simple broadcast medium
 - Encode the name of destination in each packet
 - Send packet to every end host
 - On receiving a packet, if host name matches the packet destination then accept, else discard
- **Problem:** Collision !!

- Carrier Sense: continuously listen to the channel
 - If idle: start transmitting
 - If busy: wait until idle
- Collision Detection: listen while transmitting
 - No collision: transmission complete
 - Collision: abort transmission; send jam signal
- Random access: exponential back off
 - After collision, transmit after "waiting time"
 - After k collisions, choose "waiting time" from {0, ..., 2k-1}

Drawback of CSMA/CD

- Imposes restrictions on frame size and network length *Transmission time* > 2 * propagation delay
- As link bandwidth increases, transmission time decreases
- Thus propagation delay needs to be very small
- Network length can become extremely small !!

Point-to-Point Medium

- Enables concurrent communication
 - A can talk to C, while B talks to D
 - − No collisions \rightarrow no need for CSMA/CD
 - No constraints on link lengths and frame size

Switched Ethernet

Destination address

Port to forward on

- On receiving a packet
 - Check the forwarding table for packet's destination address
 - If entry present, forward via corresponding port
 - Else broadcast
 - Add an entry in the forwarding table (if not already present)
 - <Packet source address, Port on which packet was received>
 - E.g. <A, 3>

But there is a problem...

- Loops in the topology !!!
- Build a spanning tree
 - Contains all the vertices but no cycles
 - Links not in the spanning tree not used for forwarding packets

Spanning Tree Protocol

- Initially each switch proposes itself as the root
 - that is, switch X announces (X,0,X) to its neighbors
- Switches update their view
 - Upon receiving message (Y,d,Y) from Z, check Y's id
 - If Y's id < current root: set root = Y
- Switches compute their distance from the root
 - Add 1 to the shortest distance received from a neighbor
- If root or shortest distance to it changed, send neighbors updated message (Y,d+1,X)
- Each switch determines if a link is on its shortest path to the root, excludes it from the tree if not

Network Layer

How to exchange data across local networks?

Routing

• Each router maintains a routing table

Destination address

Port to forward on

- How to construct the routing table?
 - Link State Protocol
 - "Tell about your neighbours to everyone"
 - Distance Vector Protocol
 - "Tell your neighbours about everyone"

Link State Protocol

- Every router knows its local "link state"
 - Knows state of links to neighbors
 - Up/down, and associated cost
- A router floods its link state to all other routers
 - Uses a special packet Link State Announcements (LSA)
 - Announcement is delivered to all nodes (Flooding)
 - Hence, every router learns the entire network graph
- Runs route computation locally
 - Computing least cost paths from them to all other nodes
 - E.g., using Dijkstra's algorithm

Distance Vector Protocol

- Assume link between nodes x,y has cost c(x,y)
- Node u finds minimal cost paths using the following
 - 1. Neighbors tell me their distance to all nodes v
 - Each neighbor w gives me a "distance vector" d(w,v) for all v
 - 2. Node u's cost to a given destination v is then:
 - d(u,v) = Min_{nbrs w} [c(u,w) + d(w,v)]
 - 3. Node u tells neighbors about d(u,v)... and process repeats

Count-to-Infinity Problem

B: 1, C:	Inf A: 1, C: 1
B: 1, C:	2 A: 1, C: 1
C's shortest distance to A is via B So, C should not have exchanged this information with B	via B A: 3, C: 1
	A: 3, C: 1
	A: 5, C: 1

•	•
A: 3, C: 1	B: 1, A: 2
A: 3, C: 1	B: 1, A: 4
A: 5, C: 1	B: 1 <i>,</i> A: 4
A: 5, C: 1	B: 1, A: 6
A: 7, C: 1	B: 1 <i>,</i> A: 6
A: 7, C: 1	B: 1, A: 8
A: 9, C: 1	B: 1, A: 8
A: 9 <i>,</i> C: 1	B: 1, A: 10
:	:

:

B: 1, A: Inf

B: 1, A: 2

Questions?

Thank you!