
Computer	Networks:	

Architecture	and	Protocols

CS4450

Lecture	9	
Spanning	Tree	Protocol	

Internet	Protocol

Spring	2018	
Rachit	Agarwal



Life	Lessons

• Life	is	full	of	important	people	and	events	

• YOU,	my	PhD	students,	colleagues,	deadlines,	family,	friends,	me	…	

• Sharing	life	across	people	is	like	sharing	networks	between	users	
• Delays	mostly	due	to	just	transmission	and	propagation;		

• My	meetings,	sleep	(rare,	but	happens)	

• When	#incoming-packets	>	link	load,	queueing	delay	is	inevitable;	

• If	#emails	>	what	I	can	handle,	queueing	delay	(current	status)	

• Sometimes	failures	happen	—	requires	retransmitting	packets	

• Last	week	was	one	of	those	for	me	

• Queueing	delay	at	my	inbox	(too	many	emails	to	handle)	

• I	am	reducing	the	queue	sizes	…	

• Help	me!

2



Announcements

• Please	give	your	TAs	more	work	to	do	

• I	am	happy	to	receive	emails	

• Please	cc	the	two	TAs	on	emails:	Justin	(jmm825@),	Burcu	(bc633@)	

• Problem	Set	2	is	out	(and	on	the	webpage	now)	

• Quiz	2	solutions	will	be	out	soon	(on	Piazza)	
• Already	graded!	Available	after	class	

• We	will	release	the	code	for	socket	programming	soon	

• Thanks	for	notifying	me	before	the	class	about	absence	

• Please	cc	the	TAs	in	future

3



Quiz	1	distribution

4

 0

 5

 10

 15

 20

 25

0-4 5-9 10-14 15-19 20-24 25-29 30-30

Nu
m

be
r o

f s
tu

de
nt

s

Grade (out of 30)

Quiz 1 Grades

Mean 17.22

Median 20

Std.	devia_on 6.214827562583942



Goals	for	Today’s	Lecture

• Wrap	up	Switched	Ethernet	(and	link	layer)	

• Start	on	IP	(the	Internet	Protocol)	
• Packet	Header	as	a	network	“interface”

5



Recap:		Link	Layer

• Originally	a	broadcast	channel	
• MAC	addresses	(really,	names)	

• CSMA/CD	

• Remember:	Exponential	back-off	(more	in	problem	set	2)	

• Why	does	Ethernet	use	frames?		

• How	Link	Layer	builds	on	top	of	Physical	Layer	(that	uses	bits)	
• Bounds	on	network	length	and/or	minimum	frame	size	

• Due	to	propagation	delays	

• More	recently:	switched	Ethernet	

• Broadcast	storm!

6



Switched	Ethernet

• Enables	concurrent	communication	

• Host	A	can	talk	to	C,	while	B	talks	to	D	
• No	collisions	->	no	need	for	CSMA,	CD	

• No	constraints	on	link	lengths	or	frame	size

7



Routing	in	“Extended	LANs”

8



Naïvely	Routing	in	“Extended	LANs”:	Broadcast	storm

9



How	to	avoid	the	Broadcast	Storm	Problem?

10

Get	rid	of	the	loops!



Lets	get	back	to	the	graph	representation!

11



Easiest	Way	to	Avoid	Loops

• Use	a	network	topology	(graph)	where	loop	is	impossible!	

• Take	arbitrary	topology	(graph)	

• Build	spanning	tree	
• Subgraph	that	includes	all	vertices	but	contains	no	cycles	
• Links	not	in	the	spanning	tree	are	not	used	in	forwarding	frames	

• Only	one	path	to	destinations	on	spanning	trees	
• So	don't	have	to	worry	about	loops!

12



Consider	Graph

13



A	Spanning	Tree

14



Another	Spanning	Tree

15



Yet	Another	Spanning	Tree

16



Spanning	Tree	Protocol

• Protocol	by	which	bridges	construct	a	spanning	tree	

• Nice	properties	
• Zero	configuration	(by	operators	or	users)	
• Self	healing	

• Still	used	today	

• Constraints	for	backwards	compatibility	

• No	changes	to	end-hosts	
• Maintain	plug-n-play	aspect	

• Earlier	Ethernet	achieved	plug-n-play	by	leveraging	a	broadcast	medium	

• Can	we	do	the	same	for	a	switched	topology?

17



Algorithm	has	Two	Aspects…

• Pick	a	root:	
• Destination	to	which	the	shortest	paths	go	
• Pick	the	one	with	the	smallest	identifier	(MAC	address)	

• Compute	the	shortest	paths	to	the	root	

• No	shortest	path	can	have	a	cycle	
• Only	keep	the	links	on	the	shortest	path	
• Break	ties	in	some	way		

• so	we	only	keep	one	shortest	path	from	each	node	

• Ethernet’s	spanning	tree	construction	does	both	with	a	single	algorithm

18



Breaking	Ties

• When	there	are	multiple	shortest	paths	to	the	root,		

• Choose	the	path	that	uses	the	neighbor	switch	with	the	lower	ID	

• One	could	use	any	tie	breaking	system	

• This	is	just	an	easy	one	to	remember	and	implement

19



Constructing	a	Spanning	Tree

• Messages	(Y,d,X)	

• From	node	X	

• Proposing	Y	as	the	root	
• And	advertising	a	distance	d	to	Y	

• Switches	elect	the	node	with	smallest	identifier	(MAC	address)	as	root	

• Y	in	messages	

• Each	switch	determines	if	a	link	is	on	its	shortest	path	to	the	root	

• If	not,	excludes	it	from	the	tree	

• d	to	Y	in	the	message	is	used	to	determine	this

20



Steps	in	Spanning	Tree	Protocol

• Messages	(Y,d,X)	

• For	root	Y;	From	node	X;	advertising	a	distance	d	to	Y	

• Initially	each	switch	proposes	itself	as	the	root	
• that	is,	switch	X	announces	(X,0,X)	to	its	neighbors	

• Switches	update	their	view	
• Upon	receiving	message	(Y,d,Y)	from	Z,	check	Y’s	id	

• If	Y’s	id	<	current	root:	set	root	=	Y	

• Switches	compute	their	distance	from	the	root	

• Add	1	to	the	shortest	distance	received	from	a	neighbor	

• If	root	or	shortest	distance	to	it	changed,	send	neighbors	updated	
message	(Y,d+1,X)

21



Group	Exercise:		

Run	the	Spanning	Tree	Protocol	on	this	example



23



24



25



26



Links	on	Spanning	Tree

• 3-1	
• 5-1	
• 6-1	
• 2-3	
• 4-2	
• 7-2

27



Robust	Spanning	Tree	Algorithm

• Algorithm	must	react	to	failures	

• Failure	of	the	root	node	
• Failure	of	switches	and	links	

• Root	node	sends	periodic	announcement	messages	

• Other	switches	continue	forwarding	messages	

• Detecting	failures	through	timeout	(soft	state)	

• If	no	word	from	root,	time	out	and	claim	to	be	the	root!

28



Self-resilient	upon	link/node	failures	(suppose	node	1	fails)

• 2	is	new	root	
• 3-2	
• 6-2	
• 4-2	
• 7-2	
• 5-6

29



30

The	end	of	Link	Layer	….	

And	the	beginning	of	network	layer	:-D

Built	on	top	of	
reliable	delivery

Built	on	top	of	best-
effort	forwarding

Built	on	top	of	
best-effort	routing

Built	on	top	of	
physical	bit	transfer



Network	Layer

• THE	functionality:	delivering	the	data	

• THE	protocol:	Internet	Protocol	(IP)	
• To	achieve	its	functionality	(delivering	the	data),	IP	protocol	has	
three	responsibilities	

• Addressing	(next	lecture)	
• Encapsulating	data	into	packets	(actually	datagrams;	next	lecture)	

• Routing	(using	a	variety	of	protocols;	several	lectures)



Internet	Protocol

• THE	functionality:	delivering	the	data	

• THE	protocol:	Internet	Protocol	(IP)	
• To	achieve	its	functionality	(delivering	the	data),	IP	protocol	has	
three	responsibilities	

• Unifying	protocol



What	is	“designing”	a	protocol?

• Specifying	the	syntax	of	its	messages	

• Format	

• Specifying	their	semantics	

• Meaning	

• Responses



What	is	Designing	IP?

• Syntax:	format	of	packet	

• Nontrivial	part:	packet	“header”	
• Rest	is	opaque	payload	(why	opaque?)	

• Semantics:	meaning	of	header	fields	

• Required	processing

Opaque PayloadHeader



Packet	Header	as	Interface

• Think	of	packet	header	as	interface	
• Only	way	of	passing	information	from	packet	to	switch	

• Designing	interfaces:	
• What	task	are	you	trying	to	perform?	

• What	information	do	you	need	to	accomplish	it?	

• Header	reflects	information	needed	for	basic	tasks



What	Tasks	Do	We	Need	to	Do?

• Read	packet	correctly	
• Get	the	packet	to	the	destination	
• Get	responses	to	the	packet	back	to	source	
• Carry	data	
• Tell	host	what	to	do	with		packet	once	arrived	
• Specify	any	special	network	handling	of	the	packet	
• Deal	with	problems	that	arise	along	the	path



Reading	Packet	Correctly

• Where	does	the	header	end?	

• Where	the	the	packet	end?	

• What	version	of	IP?	

• Why	is	this	so	important?



Getting	to	the	Destination	

• Provide	destination	address	

• Should	this	be	location	or	identifier	(name)?	

• And	what’s	the	difference?	

• If	a	host	moves	should	its	address	change?	

• If	not,	how	can	you	build	scalable	Internet?	
• If	so,	then	what	good	is	an	address	for	identification?



Getting	Response	Back	to	Source

• Source	address	

• Necessary	for	routers	to	respond	to	source		
• When	would	they	need	to	respond	back?	

• Failures!	
• Do	they	really	need	to	respond	back?	

• How	would	the	source	know	if	the	packet	has	reached	the	
destination?



Carry	Data

• Payload!



Questions?



List	of	Tasks

• Read	packet	correctly	
• Get	the	packet	to	the	destination	
• Get	responses	to	the	packet	back	to	source	
• Carry	data	
• Tell	host	what	to	do	with	packet	once	arrived	
• Specify	any	special	network	handling	of	the	packet	
• Deal	with	problems	that	arise	along	the	path



Telling	Destination	How	to	Process	Packet

• Indicate	which	protocols	should	handle	packet	

• What	layers	should	this	protocol	be	in?	

• What	are	some	options	for	this	today?	

• How	does	the	source	know	what	to	enter	here?



Special	Handling

• Type	of	service,	priority,	etc.	

• Options:	discuss	later



Dealing	With	Problems

• Is	packet	caught	in	loop?	
• TTL	

• Header	corrupted:	
• Detect	with	Checksum	

• What	about	payload	checksum?	

• Packet	too	large?	
• Deal	with	fragmentation	

• Split	packet	apart	
• Keep	track	of	how	to	put	together	



Are	We	Missing	Anything?

• Read	packet	correctly	
• Get	the	packet	to	the	destination	
• Get	responses	to	the	packet	back	to	source	
• Carry	data	
• Tell	host	what	to	do	with	packet	once	arrived	
• Specify	any	special	network	handling	of	the	packet	
• Deal	with	problems	that	arise	along	the	path



From	Semantics	to	Syntax	

• The	past	few	slides	discussed	the	kinds	of	information	the	header	must	

provide	

• Will	now	show	the	syntax	(layout)	of	IPv4	header,	and	discuss	the	

semantics	in	more	detail



IP	Packet	Structure

4-bit Version
4-bit Header 

Length
8-bit Type of 

Service 
(TOS)

16-bit Total Length (Bytes)

16-bit Identification 3-bit Flags 13-bit Fragment Offset

8-bit Time to Live 
(TTL) 8-bit Protocol 16-bit Header Checksum

32-bit Source IP Address

32-bit Destination IP Address

Options (if any)

Payload



20	Bytes	of	Standard	Header,	then	Options

4-bit Version
4-bit Header 

Length
8-bit Type of 

Service 
(TOS)

16-bit Total Length (Bytes)

16-bit Identification 3-bit Flags 13-bit Fragment Offset

8-bit Time to Live 
(TTL) 8-bit Protocol 16-bit Header Checksum

32-bit Source IP Address

32-bit Destination IP Address

Options (if any)

Payload



Next	Set	of	Slides

• Mapping	between	tasks	and	header	fields		

• Each	of	these	fields	is	devoted	to	a	task	

• Let’s	find	out	which	ones	and	why…



Go	Through	Tasks	One-by-One

• Read	packet	correctly	
• Get	the	packet	to	the	destination	
• Get	responses	to	the	packet	back	to	source	
• Carry	data	
• Tell	host	what	to	do	with	packet	once	arrived	
• Specify	any	special	network	handling	of	the	packet	
• Deal	with	problems	that	arise	along	the	path



Read	Packet	Correctly

• Version	number	(4	bits)	

• Indicates	the	version	of	the	IP	protocol	
• Necessary	to	know	what	other	fields	to	expect	
• Typically	“4”	(for	IPv4),	and	sometimes	“6”	(for	IPv6)	

• Header	length	(4	bits)	
• Number	of	32-bit	words	in	the	header	

• Typically	“5”	(for	a	20-byte	IPv4	header)	
• Can	be	more	when	IP	options	are	used	

• Total	length	(16	bits)	
• Number	of	bytes	in	the	packet	

• Maximum	size	is	65,535	bytes	(2^16	-1)	

• …	though	underlying	links	may	impose	smaller	limits



Fields	for	Reading	Packet	Correctly

4-bit Version
4-bit Header 

Length
8-bit Type of 

Service 
(TOS)

16-bit Total Length (Bytes)

16-bit Identification 3-bit Flags 13-bit Fragment Offset

8-bit Time to Live 
(TTL) 8-bit Protocol 16-bit Header Checksum

32-bit Source IP Address

32-bit Destination IP Address

Options (if any)

Payload



Getting	Packet	to	Destination	and	Back

• Two	IP	addresses	
• Source	IP	address	(32	bits)	
• Destination	IP	address	(32	bits)	

• Destination	Address	
• Unique	locator	for	the	receiving	host		
• Allows	each	node	to	make	forwarding	decisions	

• Source	Address	
• Unique	locator	for	the	sending	host	
• Recipient	can	decide	whether	to	accept	packet	
• Enables	recipient	to	send	a	reply	back	to	the	source



Fields	for	Reading	Packet	Correctly

4-bit Version
4-bit Header 

Length
8-bit Type of 

Service 
(TOS)

16-bit Total Length (Bytes)

16-bit Identification 3-bit Flags 13-bit Fragment Offset

8-bit Time to Live 
(TTL) 8-bit Protocol 16-bit Header Checksum

32-bit Source IP Address

32-bit Destination IP Address

Options (if any)

Payload



Questions?



List	of	Tasks

• Read	packet	correctly	
• Get	the	packet	to	the	destination	
• Get	responses	to	the	packet	back	to	source	
• Carry	data	
• Tell	host	what	to	do	with	packet	once	arrived	
• Specify	any	special	network	handling	of	the	packet	
• Deal	with	problems	that	arise	along	the	path



Telling	Host	How	to	Handle	Packet	

• Protocol	(8	bits)	
• Identifies	the	higher	level	protocol	
• Important	for	demultiplexing	at	receiving	host	

• Most	common	examples	

• E.g.,	“6”	for	the	Transmission	Control	Protocol	(TCP)	

• E.g.,	“17”	for	the	User	Datagram	Protocol

IP Header
TCP Header

IP Header
TCP Header

Protocol = 6 Protocol = 17



Fields	for	Reading	Packet	Correctly

4-bit Version
4-bit Header 

Length
8-bit Type of 

Service 
(TOS)

16-bit Total Length (Bytes)

16-bit Identification 3-bit Flags 13-bit Fragment Offset

8-bit Time to Live 
(TTL) 8-bit Protocol 16-bit Header Checksum

32-bit Source IP Address

32-bit Destination IP Address

Options (if any)

Payload



Special	Handling

• Type-of-Service	(8-bits)	
• Allow	packets	to	be	treated	differently	based	on	needs		
• E.g.,	low	delay	for	audio,	high	bandwidth	for	bulk	transfer	
• Has	been	redefined	several	times,	no	general	use	

• Options	
• Ability	to	specify	other	functionality	
• Extensible	format	(later)



Fields	for	Reading	Packet	Correctly

4-bit Version
4-bit Header 

Length
8-bit Type of 

Service 
(TOS)

16-bit Total Length (Bytes)

16-bit Identification 3-bit Flags 13-bit Fragment Offset

8-bit Time to Live 
(TTL) 8-bit Protocol 16-bit Header Checksum

32-bit Source IP Address

32-bit Destination IP Address

Options (if any)

Payload



Option	Field	Layout

Field Size (bits) Description

Copied 1 Set if field copied to all 
fragments

Class 2 0 = control, 2 = debugging/
measurement

Number 5 Specified option

Length 8 Size of entire option

Data Variable Option-specific data



Examples	of	Options

• Record	Route	
• Strict	Source	Route	
• Loose	Source	Route	
• Timestamp	

• Traceroute	
• Router	Alert	
• …



Potential	Problems

• Header	Corrupted:	Checksum	

• Loop:	TTL	

• Packet	too	large:	Fragmentation



Preventing	Loops

• Forwarding	loops	cause	packets	to	cycle	forever	
• As	these	accumulate,	eventually	consume	all	capacity	

• Time-to-live	(TTL)	Field	(8-bits)	

• Decremented	at	each	hop,	packet	discarded	if	reaches	0	

• …	and	“time	exceeded”	message	is	sent	to	the	source	

• Using	“ICMP”	control	message;	basis	for	traceroute



TTL	Field

4-bit Version
4-bit Header 

Length
8-bit Type of 

Service 
(TOS)

16-bit Total Length (Bytes)

16-bit Identification 3-bit Flags 13-bit Fragment Offset

8-bit Time to Live 
(TTL) 8-bit Protocol 16-bit Header Checksum

32-bit Source IP Address

32-bit Destination IP Address

Options (if any)

Payload



Header	Corruption

• Checksum	(16	bits)	

• Particular	form	of	checksum	over	packet	header	

• If	not	correct,	router	discards	packets	
• So	it	doesn’t	act	in	bogus	information	

• Checksum	recalculated	at	every	router	

• Why?	

• Why	include	TTL?	

• Why	only	header?



Checksum	Field

4-bit Version
4-bit Header 

Length
8-bit Type of 

Service 
(TOS)

16-bit Total Length (Bytes)

16-bit Identification 3-bit Flags 13-bit Fragment Offset

8-bit Time to Live 
(TTL) 8-bit Protocol 16-bit Header Checksum

32-bit Source IP Address

32-bit Destination IP Address

Options (if any)

Payload



Thats	it	for	today


