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Performance of distributed 
systems depends heavily on the 
datacenter interconnect



Example - MapReduce

Source: https://blog.sqlauthority.com/2013/10/09/big-data-buzz-words-what-is-mapreduce-day-7-of-21/



Evaluation Metrics for Datacenter Topologies

• Diameter – max #hops between any 2 nodes
• Worst case latency

• Bisection Width – min #links cut to partition network into 2 equal 
halves
• Fault tolerance

• Bisection Bandwidth – min bandwidth between any 2 equal halves of 
the network
• Bottleneck

• Oversubscription – ratio of worst-case achievable aggregate 
bandwidth between end-hosts to total bisection bandwidth



Legacy Topologies

Source: http://pseudobit.blogspot.com/2014/07/network-classification-by-network.html



3-Tier Architecture
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Source: CS 5413, Hakim Weatherspoon, Cornell University

Congestion!



Big-Switch Architecture

Source: Jupiter Rising, Google

Cost $O(100,000)!

Cost $O(1,000)!



Goals for Datacenter Networks (circa 2008)

• 1:1 oversubscription ratio – all 
hosts can communicate with 
arbitrary other hosts at full 
bandwidth of their network 
interface
• Google’s Four-Post CRs offered 

only about 100Mbps
• Low cost – cheap off-the-shelf 

switches

Source: A Scalable, Commodity Data Center 
Network Architecture.  Al-Fares et al.



Fat-Trees

Source: Francesco Celestino, https://www.systems.ethz.ch/sites/default/files/file/acn2016/slides/04-topology.pdf



Advantages of Fat-Tree Design

• Increased throughput between racks
• Low cost because of commodity switches
• Increased redundancy



Software Control

• Custom control plane
• Existing protocols did not support multipath, equal-cost forwarding
• Lack of high quality open source routing stacks
• Protocol overhead of running broadcast-based algorithms on such large scale
• Easier network manageability

• Treat the network as a single fabric with O(10,000) ports
• Anticipated some of the principles of Software Defined Networking



Issues – Congestion

High congestion as utilization approached 25%
• Bursty flows
• Limited buffer on commodity switches
• Intentional oversubscription for cost saving
• Imperfect flow hashing



Congestion – Solutions

• Configure switch hardware schedulers to drop packets based on QoS
• Tune host congestion window
• Link-level pause reduces over-running oversubscribed links
• Explicit Congestion Notification
• Provision bandwidth on-the-fly by repopulating
• Dynamic buffer sharing on merchant silicon to absorb bursts
• Carefully configure switch hashing to support ECMP load balancing



Insights Gained

• 75% of traffic stays within a rack (Clouds)
• Applications are not uniformly placed

• Half packets are small (< 200B)
• Keep alive integral in application design

• At most 25% of core links highly utilized
• Effective routing algorithm to reduce utilization
• Load balance across paths and migrate VMs

• Questioned popular assumptions
• Do we need more bisection? No
• Is centralization feasible? Yes
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Complex Architecture of Networks

• Path-computation logic is bundled with packet handling.
• In IP networks, path-computation logic is governed by

distributed protocols such as OSPF, IS-IS, and EIGRP.
• In Ethernet networks, path-computation logic is embedded in

the Spanning Tree Protocol.

• Network-level objectives can be di↵erent from best-e↵ort
packet delivery.

• Incremental changes of the control-plane only leads to
complex and fragile networks.

Presenter: Shih-Hao Tseng
A Clean Slate 4D Approach to Network Control and Management
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A Clean Slate Approach

• Redesign the network via the 4D approach: decision,
dissemination, discovery, and data.
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A Clean Slate Approach

• Redesign the network via the 4D approach: decision,
dissemination, discovery, and data.
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A Clean Slate 4D Approach to Network Control and Management

3



Advantages of the 4D Architecture

• Separate networking logic from distributed system issues.

• Higher robustness.

• Better security.

• Accommodating heterogeneity.

• Enabling of innovation and network evolution.

Presenter: Shih-Hao Tseng
A Clean Slate 4D Approach to Network Control and Management
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Challenges of the 4D Architecture

• Complexity apocalypse.

• Stability failures.

• Scalability problems.

• Response time.

• Security vulnerabilities.

Presenter: Shih-Hao Tseng
A Clean Slate 4D Approach to Network Control and Management
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Next Steps

• Decision plane:
• Satisfying network-level objectives.
• Coordination between decision elements.
• Hierarchy in the decision plane.

• Dissemination plane.

• Data plane.

Presenter: Shih-Hao Tseng
A Clean Slate 4D Approach to Network Control and Management
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Software-Defined Networking

• Separating the control logic (control plane) from the
forwarding mechanism (data plane).

(a) Distributed protocol (b) Software-defined networking

Presenter: Shih-Hao Tseng
A Clean Slate 4D Approach to Network Control and Management
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Software-Defined Networking 

• Separate control plane and forwarding plane
• Common, open, agnostic vendor-agnostic interface
• Control forwarding devices across different hardware/software devices

• OpenFlow
• Proliferation of header fields complicates protocol
• Multiple stages of rule tables
• Difficult to scale due to lack of flexibility

• Goal: tell the switch how to operate



Abstract Forwarding Model

• Arriving packets are handled 
by the parser
• No assumptions about headers’ 

intent
• Header fields passed to the 

match-action tables
• Ingress - modify packet, 

determine egress port and 
proper queue
• Egress – modify packet, prepare 

for operations (e.g. multicast) 



P4: Programming Protocol-
Independent Packet Processors



P4: A Solution

• Raise the level of abstraction for programming the network
• General interface between the controller and switches
• Reconfigurability
• Controller can redefine the packet parsing and processing

• Protocol Independence
• Switch is decoupled from specific packet formats
• Controller specified packet parser and match-action tables

• Target Independence
• Compiler handles switch capabilities, not the controller programmer



Next Steps

• Control plane programming: NOX, Gude et al., 2008.

• SD-Internet Exchange Points: iSDX, Gupta et al., 2016

• Separating the edge and fabric control: Fabric, Casado et al.,
2012.

Presenter: Shih-Hao Tseng
A Clean Slate 4D Approach to Network Control and Management
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Datacenter Congestion 
Control: DCTCP



TCP in the Datacenter context

• TCP in the context of Datacenters is not optimal

• TCP’s demands on limited buffer space in data center switches are 
too high

• Queues at switches become too congested, and impacts 
performance of “foreground” traffic



What we need:

• Low latency for short flows and high burst tolerance
• many applications use a Partition/Aggregate workflow pattern
• requirements for low latency directly impact the quality of application 

results
• High utilization for large flows

• Need to continuously update internal data structures in applications and 
the data inside these data structures



Main Insights and 
Contributions



Partition/Aggregate Design pattern

• Used in many large scale web-applications
• Latency is key metric
• Network delays play a big role in application design
• Meeting deadlines with TCP is very difficult, so some developers 

resort to alternative solutions



Workload Characterization

• Three types of workloads presented:
• Query traffic 
• Short message traffic – coordinates cluster activities
• Background  traffic – ingests and organizes data



Query Traffic

• Follow Partition/Aggregate pattern
• consists of very short, latency-critical flows
• High Level Aggregators (HLA) partition queries to a large number of 

Mid Level Aggregators (MLA) and workers
• Servers act as an aggregator for some queries while also acting as 

worker for other queries 



Background Traffic 

• Runs concurrent to query traffic
• Consists of large and small flows
• Most flows are small, but most bytes are a part of large flows
• Update flows – update data to workers
• Short message flows – update control state of workers



Flow Concurrency and Size

• Median number of concurrent flows: 36

• In summary: large flows, small flows, and bursty query flows coexist in a datacenter 



Incast

• Can occur even if flow sizes are small
• a response that causes incast will usually miss aggregator deadline
• current solution: jittering 



Queue Buildup

• Caused by long-lived greedy TCP flows and when long/short flows 
both traverse same queue
• packet loss on short flows cause incast
• short flows experience increased latency
• Since latency is caused by queueing, the only solution is to shrink 

queues



Buffer Pressure 

• buffer space is a shared resource
• Results in packet loss and timeouts



Multipath TCP (MPTCP) 

• Enables topologies that single path TCP cannot utilize
• Searches for multiple paths simultaneously
• links congestion response of subflows on different paths to move 

traffic away from congestion



MPTCP Cont’d. 

• Extends TCP so that a single connection can be striped across 
multiple paths
• Can explicitly move traffic off more congested paths and place it on 

less congested ones
• Chooses paths randomly
• Additional TCP operations reconstruct the received data



pFabric

• Transport Protocol based on the idea that flow scheduling should be 
decoupled from rate control 
• Goal: Design the simplest transport protocol that provides near 

optimal Flow Completition Time (FCT) 
• Downsides: Requires specialized hardware, potentially expensive to 

deploy in real networks 



pFabric Implementation

• Switch Design
• Priority scheduling: if a port is idle, packet with the highest priority buffered is 

dequeued and sent out
• Priority Dropping: drops lowest priority packet in buffer to make room

• Data structures
• Queue of actual packets
• Queue of packet metadata



Packet Scheduling and Rate Control

• Starvation Prevention: Dequeue earliest packet from the flow that 
has highest priority packet in the queue
• Rate Control: because of scheduling algorithm, need for rate control 

is minimal
• Exception: When a packet traverses multiple hops only to be dropped 

at a downstream link



Rate Control Policy

• Flows start at line rate
• Use SACKS, additive increase for every ACK
• Packet drops are detected by timeouts
• If a certain number of timeouts occur, flow enters “probe mode” 

where it periodically retransmits minimum sized packets and re-
enters slow start after receiving an ACK



pHost

• Similar design principles as pFabric, but aims to rely only on 
commodity network hardware
• Allows programmers to customize the packet scheduling algorithm to 

achieve different policy goals 
• Especially useful when datacenters are shared by multiple 

users/applications
• Paper is co-authored by Rachit!



Basic Transport Mechanism

• Built around a host-based scheduling mechanism
• Uses requests-to-send (RTS), per-packet token assignment, and 

receiver-based selection of pending flows
• Scheduling at destination, scheduling at source, priority level of each 

packet, and number of free tokens per source allow for different 
performance goals without network modification 



Solution: Data Center TCP  (DCTCP)

• TCP-like protocol
• Uses Explicit Congestion Notification (ECN) for congestion detection
• Implicit rate control by keeping queues small/empty
• Provides high burst tolerance and low latency for short flows
• Allows applications to handle much more background traffic without 

interrupting foreground traffic 
• Increasing Foreground traffic does not cause timeouts 



DCTCP Algorithm

• Goal: Achieve high burst-tolerance, low latency, and high throughput, 
with commodity shallow buffered switches
• Achieves these goals primarily by reacting to congestion in proportion 

to extent of congestion
• DCTCP source reacts by reducing window by a factor that depends on 

the fraction of marked packets



DCTCP Algorithm (Cont’d)

• Simple marking at switch
• arriving packet will be marked if the queue has more than k elements. 

Otherwise, not marked. 
• ECN Echo at receiver
• uses delayed ACKS, otherwise similar to TCP receivers

• Controller at the Sender
• sender maintains an estimate of fraction of packets that are marked, called 

alpha, which is updated once for every window of data 



DCTCP Algorithm (Cont’d)

• Where F is the fraction of packets that were marked in the last window of 
data
• g is the weight given to new samples
• if alpha close to 0, low congestion, if alpha close to 1, high congestion



Benefits

• Solves three problems:
• Queue Buildup

• DCTCP senders start to react as soon as queues have > K elements in them
• reduces queuing delays on congested ports
• allows for more headroom to absorb bursts

• Buffer Pressure
• a congested port’s queue length does not grow exceedingly large

• Incast
• incast scenario: large number of synchronized small flows hit the same queue
• early/aggressive marking allows DCTCP to tame the size of follow up bursts 



Evaluation Summary

• pHost and pFabric seem to do better than DCTCP with websearch and 
data mining, but DCTCP does the best for total request completion 
times in Incast traffic patterns
• unclear how MPTCP does against DCTCP, 
• all of these options are better than TCP



Evaluation (Cont’d)

95th percentile of query completion time

With Dynamic Buffering in DCTCP: 



Evaluation compared to pFabric



Evaluation compared to pFabric



Future Work and Discussion 
Questions



Discussion Questions

• Why is today’s class centered around DCTCP instead of more efficient 
transport protocols like pHost and pFabric?
• Is it worthwhile to continue looking into transport protocols similar 

to TCP, or should we look into different concepts like decoupling rate 
control from packet scheduling, like pFabric and pHost?


