
CS 4450
Network Fabric

Based on:

1. Jupiter Rising: A Decade of Clos Topologies and Centralized Control in Google’s Datacenter
Network. Singh et al. SIGCOMM15.

2. Network Traffic Characteristics of Data Centers in the Wild. Benson et al. IMC10.
3. Benson’s original slide deck from IMC10.

Performance of distributed
systems depends heavily on the
datacenter interconnect

Example - MapReduce

Source: https://blog.sqlauthority.com/2013/10/09/big-data-buzz-words-what-is-mapreduce-day-7-of-21/

Evaluation Metrics for Datacenter Topologies

• Diameter – max #hops between any 2 nodes
• Worst case latency

• Bisection Width – min #links cut to partition network into 2 equal
halves
• Fault tolerance

• Bisection Bandwidth – min bandwidth between any 2 equal halves of
the network
• Bottleneck

• Oversubscription – ratio of worst-case achievable aggregate
bandwidth between end-hosts to total bisection bandwidth

Legacy Topologies

Source: http://pseudobit.blogspot.com/2014/07/network-classification-by-network.html

3-Tier Architecture

Server racks

TOR switches - Edge

Tier-2 switches - Aggregation

Load

balancer

Load

balancer

B

1 2 3 4 5 6 7 8

A C

Border router

Access router

Internet

Tier-1 switches - Core

Source: CS 5413, Hakim Weatherspoon, Cornell University

Congestion!

Big-Switch Architecture

Source: Jupiter Rising, Google

Cost $O(100,000)!

Cost $O(1,000)!

Goals for Datacenter Networks (circa 2008)

• 1:1 oversubscription ratio – all
hosts can communicate with
arbitrary other hosts at full
bandwidth of their network
interface
• Google’s Four-Post CRs offered

only about 100Mbps
• Low cost – cheap off-the-shelf

switches

Source: A Scalable, Commodity Data Center
Network Architecture. Al-Fares et al.

Fat-Trees

Source: Francesco Celestino, https://www.systems.ethz.ch/sites/default/files/file/acn2016/slides/04-topology.pdf

Advantages of Fat-Tree Design

• Increased throughput between racks
• Low cost because of commodity switches
• Increased redundancy

Software Control

• Custom control plane
• Existing protocols did not support multipath, equal-cost forwarding
• Lack of high quality open source routing stacks
• Protocol overhead of running broadcast-based algorithms on such large scale
• Easier network manageability

• Treat the network as a single fabric with O(10,000) ports
• Anticipated some of the principles of Software Defined Networking

Issues – Congestion

High congestion as utilization approached 25%
• Bursty flows
• Limited buffer on commodity switches
• Intentional oversubscription for cost saving
• Imperfect flow hashing

Congestion – Solutions

• Configure switch hardware schedulers to drop packets based on QoS
• Tune host congestion window
• Link-level pause reduces over-running oversubscribed links
• Explicit Congestion Notification
• Provision bandwidth on-the-fly by repopulating
• Dynamic buffer sharing on merchant silicon to absorb bursts
• Carefully configure switch hashing to support ECMP load balancing

Insights Gained

• 75% of traffic stays within a rack (Clouds)
• Applications are not uniformly placed

• Half packets are small (< 200B)
• Keep alive integral in application design

• At most 25% of core links highly utilized
• Effective routing algorithm to reduce utilization
• Load balance across paths and migrate VMs

• Questioned popular assumptions
• Do we need more bisection? No
• Is centralization feasible? Yes

A Clean Slate 4D Approach to Network

Control and Management

CS 6455, Lecture 12

Shih-Hao Tseng
PhD student, Networks Group

School of Electrical and Computer Engineering
Cornell University

October 16, 2017

Complex Architecture of Networks

• Path-computation logic is bundled with packet handling.
• In IP networks, path-computation logic is governed by

distributed protocols such as OSPF, IS-IS, and EIGRP.
• In Ethernet networks, path-computation logic is embedded in

the Spanning Tree Protocol.

• Network-level objectives can be di↵erent from best-e↵ort
packet delivery.

• Incremental changes of the control-plane only leads to
complex and fragile networks.

Presenter: Shih-Hao Tseng
A Clean Slate 4D Approach to Network Control and Management

2

A Clean Slate Approach

• Redesign the network via the 4D approach: decision,
dissemination, discovery, and data.

Data

Dissemination

Decision

Discovery

network level objectives

direct
control

network wide
views

Presenter: Shih-Hao Tseng
A Clean Slate 4D Approach to Network Control and Management

3

A Clean Slate Approach

• Redesign the network via the 4D approach: decision,
dissemination, discovery, and data.

Data

Dissemination

Decision

Discovery

network level objectives

Control

Monitoring/
Forwarding

Presenter: Shih-Hao Tseng
A Clean Slate 4D Approach to Network Control and Management

3

Advantages of the 4D Architecture

• Separate networking logic from distributed system issues.

• Higher robustness.

• Better security.

• Accommodating heterogeneity.

• Enabling of innovation and network evolution.

Presenter: Shih-Hao Tseng
A Clean Slate 4D Approach to Network Control and Management

4

Challenges of the 4D Architecture

• Complexity apocalypse.

• Stability failures.

• Scalability problems.

• Response time.

• Security vulnerabilities.

Presenter: Shih-Hao Tseng
A Clean Slate 4D Approach to Network Control and Management

5

Next Steps

• Decision plane:
• Satisfying network-level objectives.
• Coordination between decision elements.
• Hierarchy in the decision plane.

• Dissemination plane.

• Data plane.

Presenter: Shih-Hao Tseng
A Clean Slate 4D Approach to Network Control and Management

6

Software-Defined Networking

• Separating the control logic (control plane) from the
forwarding mechanism (data plane).

(a) Distributed protocol (b) Software-defined networking

Presenter: Shih-Hao Tseng
A Clean Slate 4D Approach to Network Control and Management

7

Software-Defined Networking

• Separate control plane and forwarding plane
• Common, open, agnostic vendor-agnostic interface
• Control forwarding devices across different hardware/software devices

• OpenFlow
• Proliferation of header fields complicates protocol
• Multiple stages of rule tables
• Difficult to scale due to lack of flexibility

• Goal: tell the switch how to operate

Abstract Forwarding Model

• Arriving packets are handled
by the parser
• No assumptions about headers’

intent
• Header fields passed to the

match-action tables
• Ingress - modify packet,

determine egress port and
proper queue
• Egress – modify packet, prepare

for operations (e.g. multicast)

P4: Programming Protocol-
Independent Packet Processors

P4: A Solution

• Raise the level of abstraction for programming the network
• General interface between the controller and switches
• Reconfigurability
• Controller can redefine the packet parsing and processing

• Protocol Independence
• Switch is decoupled from specific packet formats
• Controller specified packet parser and match-action tables

• Target Independence
• Compiler handles switch capabilities, not the controller programmer

Next Steps

• Control plane programming: NOX, Gude et al., 2008.

• SD-Internet Exchange Points: iSDX, Gupta et al., 2016

• Separating the edge and fabric control: Fabric, Casado et al.,
2012.

Presenter: Shih-Hao Tseng
A Clean Slate 4D Approach to Network Control and Management

8

Datacenter Congestion
Control: DCTCP

TCP in the Datacenter context

• TCP in the context of Datacenters is not optimal

• TCP’s demands on limited buffer space in data center switches are
too high

• Queues at switches become too congested, and impacts
performance of “foreground” traffic

What we need:

• Low latency for short flows and high burst tolerance
• many applications use a Partition/Aggregate workflow pattern
• requirements for low latency directly impact the quality of application

results
• High utilization for large flows

• Need to continuously update internal data structures in applications and
the data inside these data structures

Main Insights and
Contributions

Partition/Aggregate Design pattern

• Used in many large scale web-applications
• Latency is key metric
• Network delays play a big role in application design
• Meeting deadlines with TCP is very difficult, so some developers

resort to alternative solutions

Workload Characterization

• Three types of workloads presented:
• Query traffic
• Short message traffic – coordinates cluster activities
• Background traffic – ingests and organizes data

Query Traffic

• Follow Partition/Aggregate pattern
• consists of very short, latency-critical flows
• High Level Aggregators (HLA) partition queries to a large number of

Mid Level Aggregators (MLA) and workers
• Servers act as an aggregator for some queries while also acting as

worker for other queries

Background Traffic

• Runs concurrent to query traffic
• Consists of large and small flows
• Most flows are small, but most bytes are a part of large flows
• Update flows – update data to workers
• Short message flows – update control state of workers

Flow Concurrency and Size

• Median number of concurrent flows: 36

• In summary: large flows, small flows, and bursty query flows coexist in a datacenter

Incast

• Can occur even if flow sizes are small
• a response that causes incast will usually miss aggregator deadline
• current solution: jittering

Queue Buildup

• Caused by long-lived greedy TCP flows and when long/short flows
both traverse same queue
• packet loss on short flows cause incast
• short flows experience increased latency
• Since latency is caused by queueing, the only solution is to shrink

queues

Buffer Pressure

• buffer space is a shared resource
• Results in packet loss and timeouts

Multipath TCP (MPTCP)

• Enables topologies that single path TCP cannot utilize
• Searches for multiple paths simultaneously
• links congestion response of subflows on different paths to move

traffic away from congestion

MPTCP Cont’d.

• Extends TCP so that a single connection can be striped across
multiple paths
• Can explicitly move traffic off more congested paths and place it on

less congested ones
• Chooses paths randomly
• Additional TCP operations reconstruct the received data

pFabric

• Transport Protocol based on the idea that flow scheduling should be
decoupled from rate control
• Goal: Design the simplest transport protocol that provides near

optimal Flow Completition Time (FCT)
• Downsides: Requires specialized hardware, potentially expensive to

deploy in real networks

pFabric Implementation

• Switch Design
• Priority scheduling: if a port is idle, packet with the highest priority buffered is

dequeued and sent out
• Priority Dropping: drops lowest priority packet in buffer to make room

• Data structures
• Queue of actual packets
• Queue of packet metadata

Packet Scheduling and Rate Control

• Starvation Prevention: Dequeue earliest packet from the flow that
has highest priority packet in the queue
• Rate Control: because of scheduling algorithm, need for rate control

is minimal
• Exception: When a packet traverses multiple hops only to be dropped

at a downstream link

Rate Control Policy

• Flows start at line rate
• Use SACKS, additive increase for every ACK
• Packet drops are detected by timeouts
• If a certain number of timeouts occur, flow enters “probe mode”

where it periodically retransmits minimum sized packets and re-
enters slow start after receiving an ACK

pHost

• Similar design principles as pFabric, but aims to rely only on
commodity network hardware
• Allows programmers to customize the packet scheduling algorithm to

achieve different policy goals
• Especially useful when datacenters are shared by multiple

users/applications
• Paper is co-authored by Rachit!

Basic Transport Mechanism

• Built around a host-based scheduling mechanism
• Uses requests-to-send (RTS), per-packet token assignment, and

receiver-based selection of pending flows
• Scheduling at destination, scheduling at source, priority level of each

packet, and number of free tokens per source allow for different
performance goals without network modification

Solution: Data Center TCP (DCTCP)

• TCP-like protocol
• Uses Explicit Congestion Notification (ECN) for congestion detection
• Implicit rate control by keeping queues small/empty
• Provides high burst tolerance and low latency for short flows
• Allows applications to handle much more background traffic without

interrupting foreground traffic
• Increasing Foreground traffic does not cause timeouts

DCTCP Algorithm

• Goal: Achieve high burst-tolerance, low latency, and high throughput,
with commodity shallow buffered switches
• Achieves these goals primarily by reacting to congestion in proportion

to extent of congestion
• DCTCP source reacts by reducing window by a factor that depends on

the fraction of marked packets

DCTCP Algorithm (Cont’d)

• Simple marking at switch
• arriving packet will be marked if the queue has more than k elements.

Otherwise, not marked.
• ECN Echo at receiver
• uses delayed ACKS, otherwise similar to TCP receivers

• Controller at the Sender
• sender maintains an estimate of fraction of packets that are marked, called

alpha, which is updated once for every window of data

DCTCP Algorithm (Cont’d)

• Where F is the fraction of packets that were marked in the last window of
data
• g is the weight given to new samples
• if alpha close to 0, low congestion, if alpha close to 1, high congestion

Benefits

• Solves three problems:
• Queue Buildup

• DCTCP senders start to react as soon as queues have > K elements in them
• reduces queuing delays on congested ports
• allows for more headroom to absorb bursts

• Buffer Pressure
• a congested port’s queue length does not grow exceedingly large

• Incast
• incast scenario: large number of synchronized small flows hit the same queue
• early/aggressive marking allows DCTCP to tame the size of follow up bursts

Evaluation Summary

• pHost and pFabric seem to do better than DCTCP with websearch and
data mining, but DCTCP does the best for total request completion
times in Incast traffic patterns
• unclear how MPTCP does against DCTCP,
• all of these options are better than TCP

Evaluation (Cont’d)

95th percentile of query completion time

With Dynamic Buffering in DCTCP:

Evaluation compared to pFabric

Evaluation compared to pFabric

Future Work and Discussion
Questions

Discussion Questions

• Why is today’s class centered around DCTCP instead of more efficient
transport protocols like pHost and pFabric?
• Is it worthwhile to continue looking into transport protocols similar

to TCP, or should we look into different concepts like decoupling rate
control from packet scheduling, like pFabric and pHost?

