
Computer	Networks:	
Architecture	and	Protocols

CS4450

Lecture	24	
Cri,cal	Analysis	of	TCP

Spring	2018	
Rachit	Agarwal

Purpose	of	Today

• The	conceptual	parts	of	congestion	control	are	the	main	point	

• TCP	is	just	a	specific	implementation	for	a	specific	context	(Internet)	

• Need	to	understand	what	TCP	does	and	does	not	achieve	

• But	the	conceptual	parts	let	you	think	more	generally	

• Beyond	specific	TCP	congestion	control	details	
• How	would	I	design	a	congestion	control	mechanism	

• Given	my	specific	context…?	

• Congestion	control	mechanisms	depend	on	the	context	

• Different	implementations	for	different	contexts	

• One	example:	datacenter	networks	(next	lecture)	

• Another	example:	wireless	networks

Recap:	Slow	Start	and	the	TCP	Sawtooth	(no	timeouts)
Window

tExponential “slow start”

Recap:	TCP	Time	Diagram	(with	timeouts)
Window

t
Slow start in operation until it

reached half of previous CWND,
i.e., SSThresh

Fast Retransmission Timeout SSThresh
Set to here

Any	Questions?

TCP	and	fairness	guarantees

Consider	A	Simple	Model

• Flows	ask	for	an	amount	of	bandwidth	ri	
• In	reality,	this	request	is	implicit	(the	amount	they	send)	

• The	link	gives	them	an	amount	ai		
• Again,	this	is	implicit	(by	how	much	is	forwarded)	

• ai	<=	ri		

• There	is	some	total	capacity	C	

• Sum	ai	<=	C

Fairness

• When	all	flows	want	the	same	rate,	fair	is	easy	

• Fair	share	=	C/N	
• C	=	capacity	of	link	
• N	=	number	of	flows	

• Note:	
• This	is	fair	share	per	link.	This	is	not	a	global	fair	share	

• When	not	all	flows	have	the	same	demand?	

• What	happens	here?

Example	1

• Requests:	ri										Allocations:	ai	

• C	=	20	
• Requests:	r1	=	6,	r2	=	5,	r3	=	4	

• Solution	
• a1	=	6,	a2	=	5,	a3	=	4	

• When	bandwidth	is	plentiful,	everyone	gets	their	request	

• This	is	the	easy	case

Example	2

• Requests:	ri										Allocations:	ai	

• C	=	12	
• Requests:	r1	=	6,	r2	=	5,	r3	=	4	

• One	solution	
• a1	=	4,	a2	=	4,	a3	=	4	
• Everyone	gets	the	same	

• Why	not	proportional	to	their	demands?	

• ai	=	(12/15)	ri	

• Asking	for	more	gets	you	more!	

• Not	incentive	compatible	(i.e.,	cheating	works!)	

• You	can’t	have	that	and	invite	innovation!

Example	3

• Requests:	ri										Allocations:	ai	

• C	=	14	
• Requests:	r1	=	6,	r2	=	5,	r3	=	4	

• a3	=	4	(can’t	give	more	than	a	flow	wants)	

• Remaining	bandwidth	is	10,	with	demands	6	and	5	

• From	previous	example,	if	both	want	more	than	their	share,	they	

both	get	half	

• a1	=		a2	=	5

Max-Min	Fairness

• Given	a	set	of	bandwidth	demands	ri	and	total	bandwidth	C,	max-min	

bandwidth	allocations	are	ai	=	min	(f,ri)	

• Where	f	is	the	unique	value	such	that	Sum(ai)	=	C	or	set	f	to	be	

infinite	if	no	such	value	exists	

• This	is	what	round-robin	service	gives	
• If	all	packets	are	MTU	

• Property:	
• If	you	don't	get	full	demand,	no	one	gets	more	than	you

Computing	Max-Min	Fairness

• Assume	demands	are	in	increasing	order…	

• If	C/N	<=	r1,	then	ai	=	C/N	for	all	i	

• Else,	a1	=	r1,	set	C	=	C	-	a1	and	N	=	N-1	

• Repeat	

• Intuition:	all	flows	requesting	less	than	fair	share	get	their	request.	
Remaining	flows	divide	equally

Example

• Assume	link	speed	C	is	10Mbps	

• Have	three	flows:	
• Flow	1	is	sending	at	a	rate	8	Mbps	

• Flow	2	is	sending	at	a	rate	6	Mbps	

• Flow	3	is	sending	at	a	rate	2	Mbps	

• How	much	bandwidth	should	each	get?	

• According	to	max-min	fairness?	

• Work	this	out,	talk	to	your	neighbors

Example

• Requests:	ri										Allocations:	ai	

• Requests:	r1	=	8,	r2	=	6,	r3	=	2	

• C	=	10,	N	=	3,	C/N	=	3.33	
• Can	serve	all	for	r3	
• Remove	r3	from	the	accounting:	C	=	C	-	r3	=	8,	N	=	2	

• C/2	=	4	
• Can’t	service	all	for	r1	or	r2	
• So	hold	them	to	the	remaining	fair	share:	f	=	4

8
6
2

4
4

2

f = 4:
min(8, 4) = 4
min(6, 4) = 4
min(2, 4) = 2

10

Max-Min	Fairness

• Max-min	fairness	the	natural	per-link	fairness	

• Only	one	that	is	
• Symmetric	

• Incentive	compatible	(asking	for	more	doesn’t	help)

Reality	of	Congestion	Control

Conges,on	control	is	a	resource	alloca,on	problem	involving	
many	flows,	many	links	and	complicated	global	dynamics

1 Gbps

600 Mbps
2 Gbps

Classical	result:	

In	a	stable	state		
(no	dynamics;	all	flows	are	infinitely	long;	no	failures;	etc.)		

TCP	guarantees	max-min	fairness

Any	Questions?

The	Many	Failings	of	TCP	Congestion	Control

1. Fills	up	queues	(large	queueing	delays)	
2. Every	segment	not	ACKed	is	a	loss	(non-congestion	related	losses)	

3. Produces	irregular	saw-tooth	behavior		
4. Biased	against	long	RTTs	(unfair)	
5. Not	designed	for	short	flows	
6. Easy	to	cheat

(1)	TCP	Fills	Up	Queues

• TCP	only	slows	down	when	queues	fill	up	
• High	queueing	delays	

• Means	that	it	is	not	optimized	for	latency	

• What	is	it	optimized	for	then?	

• Answer:	Fairness	(discussion	in	next	few	slides)	

• And	many	packets	are	dropped	when	buffer	fills	

• Alternative	1:	Use	small	buffers		

• Is	this	a	good	idea?	
• Answer:	No,	bursty	traffic	will	lead	to	reduced	utilization	

• Alternative:	Random	Early	Drop	(RED)	

• Drop	packets	on	purpose	before	queue	is	full	
• A	very	clever	idea

Random	Early	Drop	(or	Detection)

• Measure	average	queue	size	A	with	exponential	weighting	

• Average:	Allows	for	short	bursts	of	packets	without	over-reacting	

• Drop	probability	is	a	function	of	A	
• No	drops	if	A	is	very	small	

• Low	drop	rate	for	moderate	A’s		

• Drop	everything	if	A	is	too	big	

• Drop	probability	applied	to	incoming	packets	

• Intuition:	link	is	fully	utilized	well	before	buffer	is	full

Advantages	of	RED

• Keeps	queues	smaller,	while	allowing	bursts	

• Just	using	small	buffers	in	routers	can’t	do	the	latter	

• Reduces	synchronization	between	flows	
• Not	all	flows	are	dropping	packets	at	once	
• Increases/decreases	are	more	gentle	

• Problem	

• Turns	out	that	RED	does	not	guarantee	fairness

(2)	Non-Congestion-Related	Losses?

• For	instance,	RED	drops	packets	intentionally	
• TCP	would	think	the	network	is	congested	

• Can	use	Explicit	Congestion	Notification	(ECN)	

• Bit	in	IP	packet	header	(actually	two)	
• TCP	receiver	returns	this	bit	in	ACK	

• When	RED	router	would	drop,	it	sets	bit	instead		

• Congestion	semantics	of	bit	exactly	like	that	of	drop	

• Advantages	
• Doesn’t	confuse	corruption	with	congestion

(3)	Sawtooth	Behavior	Uneven

• TCP	throughput	is	“choppy"	
• Repeated	swings	between	W/2	to	W	

• Some	apps	would	prefer	sending	at	a	steady	rate	

• E.g.,	streaming	apps	

• A	solution:	“Equation-based	congestion	control”	
• Ditch	TCP’s	increase/decrease	rules	and	just	follow	the	equation:	
• [Matthew	Mathis,	1997]	TCP	Throughput	=	MSS/RTT	sqrt(3/2p)	

• Where	p	is	drop	rate	

• Measure	drop	percentage	p	and	set	rate	accordingly	

• Following	the	TCP	equation	ensures	we’re	TCP	friendly	
• I.e.,	use	no	more	than	TCP	does	in	similar	setting

Any	Questions?

(4)	Bias	Against	Long	RTTs

• Flows	get	throughput	inversely	proportional	to	RTT	
• TCP	unfair	in	the	face	of	heterogeneous	RTTs!	
• [Matthew	Mathis,	1997]	TCP	Throughput	=	MSS/RTT	sqrt(3/2p)	

• Where	p	is	drop	rate	

• Flows	with	long	RTT	will	achieve	lower	throughput

A1 B1

A2 B2

100 ms

200 ms

Bottleneck Link

Possible	Solutions

• Make	additive	constant	proportional	to	RTT	

• But	people	don’t	really	care	about	this…

(5)	How	Short	Flows	Fare?

• Internet	traffic:	
• Elephant	and	mice	flows	

• Elephant	flows	carry	most	bytes	(>95%),	but	are	very	few	(<5%)	

• Mice	flows	carry	very	few	bytes,	but	most	flows	are	mice	

• 50%	of	flows	have	<	1500B	to	send	(1	MTU);		

• 80%	of	flows	have	<	100KB	to	send	

• Problem	with	TCP?	

• Mice	flows	do	not	have	enough	packets	for	duplicate	ACKs!!	

• Drop	~=~	Timeout	(unnecessary	high	latency)	

• These	are	precisely	the	flows	for	which	latency	matters!!!	

• Another	problem:	

• Starting	with	small	window	size	leads	to	high	latency

Possible	Solutions?

• Larger	initial	window?	
• Google	proposed	moving	from	~4KB	to	~15KB	

• Covers	~90%	of	HTTP	Web	

• Decreases	delay	by	5%	

• Many	recent	research	papers	on	the	timeout	problem	

• Require	network	support

(6)	Cheating

• TCP	was	designed	assuming	a	cooperative	world	

• No	attempt	was	made	to	prevent	cheating	

• Many	ways	to	cheat,	will	present	three

Cheating	#1:	ACK-splitting	(receiver)

• TCP	Rule:	grow	window	by	one	MSS	

for	each	valid	ACK	received	

• Send	M	(distinct)	ACKs	for	one	MSS	

• Growth	factor	proportional	to	M

RTT

Data 1:1461

Data 1461:2921Data 2921:4381
Data 4381:5841
Data 5841:7301

ACK 486

ACK 973

ACK 1461

Cheating	#2:	Increasing	CWND	Faster	(source)

• TCP	Rule:	increase	window	by	one	MSS	for	each	valid	ACK	received	

• Increase	window	by	M	per	ACK	

• Growth	factor	proportional	to	M

Cheating	#3:	Open	Many	Connections	(source/receiver)

• Assume	

• A	start	10	connections	to	B	
• D	starts	1	connection	to	E	
• Each	connection	gets	about	the	same	throughput	

• Then	A	gets	10	times	more	throughput	than	D

A Bx

D E
y

Cheating

• Either	sender	or	receiver	can	independently	cheat!	

• Why	hasn’t	Internet	suffered	congestion	collapse	yet?	

• Individuals	don’t	hack	TCP	(not	worth	it)	
• Companies	need	to	avoid	TCP	wars	

• How	can	we	prevent	cheating		
• Verify	TCP	implementations	

• Controlling	end	points	is	hopeless	

• Nobody	cares,	really

Any	Questions?

How	Do	You	Solve	These	Problems?

• Bias	against	long	RTTs	

• Slow	to	ramp	up	(for	short-flows)	

• Cheating	

• Need	for	uniformity

Next	lecture:	Datacenter	networks	

Where	it	matters,	
And	where	people	have	tried	to	solve	these	problems!

