
Computer	Networks:	
Architecture	and	Protocols

CS4450

Lecture	23	
TCP	and	Conges3on	Control

Spring	2018	
Rachit	Agarwal

Recap:	WHYs	behind	TCP	design

• Started	from	first	principles	

• Correctness	condition	for	reliable	transport	

• …	to	understanding	why	feedback	from	receiver	is	necessary	(sol-v1)	

• …	to	understanding	why	timers	may	be	needed	(sol-v2)	

• …	to	understanding	why	window-based	design	may	be	needed	(sol-v3)	

• …	to	understanding	why	cumulative	ACKs	may	be	a	good	idea	

• Very	close	to	modern	TCP

2

Recap:	Transport	layer

• Transport	layer	offer	a	“pipe”	abstraction	to	applications	
• Data	goes	in	one	end	of	the	pipe	and	emerges	from	other	

• Pipes	are	between	processes,	not	hosts	

• Two	basic	pipe	abstractions:	
• Unreliable	packet	delivery	(UDP)	

• Unreliable	(application	responsible	for	resending)	
• Messages	limited	to	single	packet	

• Reliable	byte	stream	delivery	

• Bytes	inserted	into	pipe	by	sender	
• They	emerge,	in	order	at	receiver	(to	the	app)

Recap:	Transmission	Control	Protocol	(TCP)

• Reliable,	in-order	delivery	
• Ensures	byte	stream	(eventually)	arrives	intact	

• In	the	presence	of	corruption,	delays,	reordering,	loss	

• Connection	oriented	
• Explicit	set-up	and	tear-down	of	TCP	session	

• Full	duplex	stream	of	byte	service	

• Sends	and	receives	stream	of	bytes,	not	messages	

• Flow	control	
• Ensures	the	sender	does	not	overwhelm	the	receiver	

• Congestion	control	
• Dynamic	adaptation	to	network	path’s	capacity

Any	Questions?

From	design	to	implementation:	major	notation	change

• Previously	we	focused	on	packets	
• Packets	had	numbers	

• ACKs	referred	to	those	numbers		

• Window	sizes	expressed	in	terms	of	#	of	packets	

• TCP	focuses	on	bytes,	thus	
• Packets	identified	by	the	bytes	they	carry	
• ACKs	refer	to	the	bytes	received	
• Window	size	expressed	in	terms	of	#	of	bytes

Basic	Components	of	TCP

• Segments,	Sequence	numbers,	ACKs		

• TCP	uses	byte	sequence	numbers	to	identify	payloads	

• ACKs	referred	to	sequence	numbers		

• Window	sizes	expressed	in	terms	of	#	of	bytes	

• Retransmissions	

• Can’t	be	correct	without	retransmitting	lost/corrupted	data	

• TCP	retransmits	based	on	timeouts	and	duplicate	ACKs	

• Timeouts	based	on	estimate	of	RTT	

• Flow	Control	

• Congestion	Control

Segments,	Sequence	Numbers	and	ACKs

TCP	“Stream	of	Bytes”	Service

Byte 0
Byte 1
Byte 2
Byte 3

Byte 80

Byte 0
Byte 1
Byte 2
Byte 3

Byte 80

Application @ Host A

Application @ Host B

TCP	“Stream	of	Bytes”	Service

Byte 0
Byte 1
Byte 2
Byte 3

Byte 80

Byte 0
Byte 1
Byte 2
Byte 3

Byte 80

Application @ Host A

Application @ Host B

TCP Data

TCP Data

Segment sent when
1) Segment full (Max Segment Size)
2) Not full, but times out

TCP	Segment

• IP	Packet	
• No	bigger	than	Maximum	Transmission	Unit	(MTU)	

• E.g.,	up	to	1500	bytes	with	Ethernet	

• TCP	Packet	
• IP	packet	with	a	TCP	header	and	data	inside	
• TCP	header	>=	20	bytes	long	

• TCP	Segment	

• No	more	than	MSS	(Maximum	Segment	Size)	bytes	

• E.g.,	up	to	1460	consecutive	bytes	from	the	stream	

• MSS	=	MTU	-	IP	header	-	TCP	header

IP Hdr
IP data (datagram)

TCP HdrTCP data (segment)

Sequence	Numbers

Host A

K bytes

Sequence number
= 1st byte in segment

= ISN + k

Initial Sequence Number (ISN)

TCP Data
TCP
Hdr

Host B

TCP Data
TCP
Hdr

ACK Sequence number
= next expected byte

= seqno + length(data)

ACKing	and	Sequence	Numbers

• Sender	sends	segments	(byte	stream)	

• Data	starts	with	Initial	Sequence	Number	(ISN):	X	

• Packet	contains	B	bytes	
• X,	X+1,	X+2,	…,	X+B-1	

• Upon	receipt	of	a	segment,	receiver	sends	an	ACK	

• If	all	data	prior	to	X	already	received:	
• ACK	acknowledges	X+B	(because	that	is	next	expected	byte)	

• If	highest	contiguous	byte	received	is	smaller	value	Y	

• ACK	acknowledges	Y+1	
• Even	if	this	has	been	ACKed	before

TCP	Header

Source Port Destination Port

Sequence Number

Acknowledgement

HdrLen

Checksum

Options (variable)

Data

Urgent Pointer

0 Flags Advertised Window

Starting byte offset
of data carried in

this segment

TCP	Header

Source Port Destination Port

Sequence Number

Acknowledgement

HdrLen

Checksum

Options (variable)

Data

Urgent Pointer

0 Flags Advertised Window

Acknowledgement
gives sequence

number just
beyond highest

sequence number
received in order

(“What byte is
next”)

TCP	Connection	Establishment		

and	Initial	Sequence	Numbers

Initial	Sequence	Number	(ISN)

• Sequence	number	for	the	very	first	byte	

• E.g.,	Why	not	just	use	ISN	=	0?	

• Practical	issue	
• IP	addresses	and	port	#s	uniquely	identify	a	connection	
• Eventually,	though,	these	port	#s	do	get	used	again	
• …	small	chance	an	old	packet	is	still	in	flight	

• TCP	therefore	requires	changing	ISN	
• Set	from	32-bit	clock	that	ticks	every	4	microseconds	

• …	only	wraps	around	once	every	4.55	hours	

• To	establish	a	connection,	hosts	exchange	ISNs	
• How	does	this	help?

Establishing	a	TCP	Connection

• Three-way	handshake	to	establish	connection	
• Host	A	sends	a	SYN	(open;	“synchronize	sequence	numbers”)	to	host	B	

• Host	B	returns	a	SYN	acknowledgement	(SYN	ACK)	

• Host	sends	an	ACK	to	acknowledge	the	SYN	ACK

SYN

ACK

Data
Data

SYN + ACK

A B

Each host tells its ISN to
the other host.

TCP	Header

Source Port Destination Port

Sequence Number

Acknowledgement

HdrLen

Checksum

Options (variable)

Data

Urgent Pointer

0 Flags Advertised Window

Flags:
SYN
ACK
FIN
RST
PSH
URG

See /usr/include/netinet/tcp.h on Unix Systems

Step	1:	A’s	Initial	SYN	Packet

A’s port B’s port

A’s Initial Sequence Number

(Irrelevant since ACK not set)

5 = 20B

Checksum

Options (variable)

Urgent Pointer

0 Flags Advertised Window

Flags:
SYN
ACK
FIN
RST
PSH
URG

A tells B it wants to open a connection…

Step	2:	B’s	SYN-ACK	Packet

B’s port A’s port

A’s Initial Sequence Number

ACK = A’s ISN plus 1

20B

Checksum

Options (variable)

Urgent Pointer

0 Flags Advertised Window

Flags:
SYN
ACK
FIN
RST
PSH
URG

B tells A it accepts and is ready to hear the next byte…

… upon receiving this packet, A can start sending data

Step	3:	A’s	ACK	of	the	SYN-ACK

A’s port B’s port

A’s Initial Sequence Number

ACK = B’s ISN plus 1

20B

Checksum

Options (variable)

Urgent Pointer

0 Flags Advertised Window

Flags:
SYN
ACK
FIN
RST
PSH
URG

A tells B it’s likewise okay to start sending

… upon receiving this packet, B can start sending data

Timing	Diagram:	3-Way	Handshaking

SYN, SeqNum = x

ACK, ACK = y+1

SYN + ACK, SeqNum = y, Ack = x + 1

Active Open Passive Open
Client (initiator) Server

listen()

connect()

accept()

Any	Questions?

TCP	Retransmission

Two	Mechanisms	for	Retransmissions

• Duplicate	ACKs	

• Timeouts

Loss	with	Cumulative	ACKs

• Sender	sends	packets	with	100B	and	seqnos	
• 100,	200,	300,	400,	500,	600,	700,	800,	900	

• Assume	5th	packet	(seqno	500)	is	lost,	but	no	others	

• Stream	of	ACKs	will	be	

• 200,	300,	400,	500,	500,	500,	500,	500

Loss	with	Cumulative	ACKs

• Duplicate	ACKs	are	a	sign	of	an	isolated	loss	
• The	lack	of	ACK	progress	means	500	hasn’t	been	delivered	

• Stream	of	ACKs	means	some	packets	are	being	delivered	

• Therefore,	could	trigger	resend	upon	receiving	k	duplicate	ACKs		
• TCP	uses	k	=	3	

• We	will	revisit	this	in	congestion	control

Timeouts	and	Retransmissions

• Reliability	requires	retransmitting	lost	data	

• Involves	setting	timers	and	retransmitting	on	timeouts	

• TCP	only	has	a	single	timer	

• TCP	resets	timer	whenever	new	data	is	ACKed	

• Retx	packet	containing	“next	byte”	when	timer	expires	

• RTO	(Retransmit	Time	Out)	is	the	basic	timeout	value

RTT

Setting	the	Timeout	Value	(RTO)

1

1

Timeout

Timeout too long -> inefficient

RTT

1

1
Timeout

Timeout too short -> duplicate packets

Setting	RTO	value

• Many	ideas	

• See	backup	slides	for	some	examples	(not	needed	for	exams)	

• Implementations	often	use	a	coarser-grained	timer	

• 500	msec	is	typical	

• Incurring	a	timeout	is	expensive	

• So	we	rely	on	duplicate	ACKs

TCP	Flow	Control

Flow	Control	(Sliding	Window)

• Advertised	Window:	W	

• Can	send	W	bytes	beyond	the	next	expected	byte	

• Receiver	uses	W	to	prevent	sender	from	overflowing	buffer	

• Limits	number	of	bytes	sender	can	have	in	flight

TCP	Header

Source Port Destination Port

Sequence Number

Acknowledgement

HdrLen

Checksum

Options (variable)

Data

Urgent Pointer

0 Flags Advertised Window

Implementing	Sliding	Window

• Sender	maintains	a	window	

• Data	that	has	been	sent	out	but	not	yet	ACK’ed	

• Left	edge	of	window:	
• Beginning	of	unacknowledged	data	
• Moves	when	data	is	ACKed	

• Window	size	=	maximum	amount	of	data	in	flight	

• Receiver	sets	this	amount,	based	on	its	available	buffer	space	

• If	it	has	not	yet	sent	data	up	to	the	app,	this	might	be	small

Advertised	Window	Limits	Rate

• Sender	can	send	no	faster	than	W/RTT	bytes/sec	

• In	original	TCP,	that	was	the	sole	protocol	mechanism	controlling	

sender’s	rate	

• What’s	missing?	

• Congestion	control	about	how	to	adjust	W	to	avoid	network	congestion

Any	Questions?

TCP	Congestion	Control

TCP	congestion	control:	high-level	idea

• End	hosts	adjust	sending	rate		

• Based	on	implicit	feedback	from	the	network	

• Implicit:	router	drops	packets	because	its	buffer	overflows,	not	
because	it’s	trying	to	send	message	

• Hosts	probe	network	to	test	level	of	congestion		
• Speed	up	when	no	congestion	(i.e.,	no	packet	drops)	
• Slow	down	when	when	congestion	(i.e.,	packet	drops)	

• How	to	do	this	efficiently?	
• Extend	TCP’s	existing	window-based	protocol…	
• Adapt	the	window	size	based	in	response	to	congestion

All	These	Windows…

• Flow	control	window:	Advertised	Window	(RWND)	

• How	many	bytes	can	be	sent	without	overflowing	receivers	buffers	

• Determined	by	the	receiver	and	reported	to	the	sender	

• Congestion	Window	(CWND)	

• How	many	bytes	can	be	sent	without	overflowing	routers	

• Computed	by	the	sender	using	congestion	control	algorithm	

• Sender-side	window	=	minimum{CWND,RWND}	

• Assume	for	this	lecture	that	RWND	>>	CWND

Note

• This	lecture	will	talk	about	CWND	in	units	of	MSS	

• Recall	MSS:	Maximum	Segment	Size,	the	amount	of	payload	data	

in	a	TCP	packet	

• This	is	only	for	pedagogical	purposes	

• Keep	in	mind	that	real	implementations	maintain	CWND	in	bytes

Basics	of	TCP	Congestion

• Congestion	Window	(CWND)	

• Maximum	#	of	unacknowledged	bytes	to	have	in	flight	

• Rate	~CWND/RTT	

• Adapting	the	congestion	window		
• Increase	upon	lack	of	congestion:	optimistic	exploration	

• Decrease	upon	detecting	congestion	

• But	how	do	you	detect	congestion?

Not	All	Losses	the	Same

• Duplicate	ACKs:	isolated	loss	
• Still	getting	ACKs	

• Timeout:	possible	disaster	

• Not	enough	duplicate	ACKs	
• Must	have	suffered	several	losses

How	to	Adjust	CWND?

• Consequences	of	over-sized	window	much	worse	than	having	an	under-
sized	window	

• Over-sized	window:	packets	dropped	and	retransmitted	

• Under-sized	window:	somewhat	lower	throughput	

• Approach	
• Gentle	increase	when	un-congested	(exploration)	
• Rapid	decrease	when	congested

Additive	Increase,	Multiplicative	Decrease	(AIMD)

• Additive	increase	
• On	success	of	last	window	of	data,	increase	by	one	MSS	

• If	W	packets	in	a	row	have	been	ACKed,	increase	W	by	one	

• i.e.,	+1/W	per	ACK	

• Multiplicative	decrease	

• On	loss	of	packets	by	DupACKs,	divide	congestion	window	by	half	
• Special	case:	when	timeout,	reduce	congestion	window	to	one	MSS

AIMD

• ACK:	CWND	->	CWND	+	1/CWND	

• When	CWND	is	measured	in	MSS	

• Note:	after	a	full	window,	CWND	increase	by	1	MSS	

• Thus,	CWND	increases	by	1	MSS	per	RTT	

• 3rd	DupACK:	CWND	->	CWND/2	

• Special	case	of	timeout:	CWND	->	1	MSS

Leads	to	the	TCP	Sawtooth

Loss

Halved

Window

t

Any	Questions?

Slow	Start

AIMD	Starts	Too	Slowly
Window

tIt could take a long time to get
started!

Need to start with a small CWND to avoid overloading the network

Bandwidth	Discovery	with	Slow	Start

• Goal:	estimate	available	bandwidth	

• Start	slow	(for	safety)	
• But	ramp	up	quickly	(for	efficiency)	

• Consider	
• RTT	=	100ms,	MSS=1000bytes	

• Window	size	to	fill	1Mbps	of	BW	=	12.5	MSS	

• Window	size	to	fill	1	Gbps	=	12,500	MSS	

• With	just	AIMD,	it	takes	about	12500	RTTs	to	get	to	this	

window	size!	

• ~21	mins

“Slow	Start”	Phase

• Start	with	a	small	congestion	window	

• Initially,	CWND	is	1	MSS	

• So,	initial	sending	rate	is	MSS/RTT	

• That	could	be	pretty	wasteful	
• Might	be	much	less	than	the	actual	bandwidth	

• Linear	increase	takes	a	long	time	to	accelerate	

• Slow-start	phase	(actually	“fast	start”)	
• Sender	starts	at	a	slow	rate	(hence	the	name)	

• …	but	increases	exponentially	until	first	loss

Slow	Start	in	Action

Src

Dst

1 2 3 4 8

Double CWND per round-trip time

Simple implementation: on each ACK, CWND += MSS

D A D AD A D
A

D
A

D
A

D
A

Slow	Start	and	the	TCP	Sawtooth
Window

tExponential “slow start”

Why is it called slow-start? Because TCP originally had no congestion control
mechanism. The source would just start by sending a whole window’s worth of data.

Slow-Start	vs	AIMD

• When	does	a	sender	stop	Slow-Start	and	start	Additive	Increase?	

• Introduce	a	“slow	start	threshold”	(ssthresh)	
• Initialized	to	a	large	value	
• On	timeout,	ssthresh	=	CWND/2	

• When	CWND	>	ssthresh,	sender	switches	from	slow-start	to	AIMD-style	

increase

Timeouts

Loss	Detected	by	Timeout

• Sender	starts	a	timer	that	runs	for	RTO	seconds	

• Restart	timer	whenever	ACK	for	new	data	arrives	

• If	timer	expires	

• Set	SSHTHRESH	<-	CWND/2	(“Slow	Start	Threshold”)	

• Set	CWND	<-	1	(MSS)	

• Retransmit	first	lost	packet	

• Execute	Slow	Start	until	CWND	>	SSTHRESH	

• After	which	switch	to	Additive	Increase

Summary	of	Increase

• “Slow	start”:	increase	CWND	by	1	(MSS)	for	each	ACK	

• A	factor	of	2	per	RTT	

• Leave	slow-start	regime	when	either:	

• CWND	>	SSTHRESH	

• Packet	drop	detected	by	dupacks	

• Enter	AIMD	regime	

• Increase	by	1	(MSS)	for	each	window’s	worth	of	ACKed	data

Summary	of	Decrease

• Cut	CWND	half	on	loss	detected	by	dupacks	

• Fast	retransmit	to	avoid	overreacting	

• Cut	CWND	all	the	way	to	1	(MSS)	on	timeout	

• Set	ssthresh	to	CWND/2	

• Never	drop	CWND	below	1	(MSS)	

• Our	correctness	condition:	always	try	to	make	progress

TCP	Congestion	Control	Details

Implementation

• State	at	sender	
• CWND	(initialized	to	a	small	constant)	

• ssthresh	(initialized	to	a	large	constant)	
• dupACKcount	
• Timer,	as	before	

• Events	at	sender	
• ACK	(new	data)	
• dupACK	(duplicate	ACK	for	old	data)	
• Timeout	

• What	about	receiver?	Just	send	ACKs	upon	arrival

Event:	ACK	(new	data)

• If	in	slow	start	
• CWND	+=	1 CWND packets per RTT

Hence after one RTT with
no drops:

CWND = 2 x CWND

Event:	ACK	(new	data)

• If	CWND	<=	ssthresh	

• CWND	+=	1	

• Else	
• CWND	=	CWND	+	1/CWND

CWND packets per RTT
Hence after one RTT with

no drops:
CWND = CWND + 1

Slow Start Phase

Congestion Avoidance Phase
(additive increase)

Event:	Timeout

• On	Timeout	

• ssthresh	<-	CWND/2	

• CWND	<-	1

Event:	dupACK

• dupACKcount++	

• If	dupACKcount	=	3	/*	fast	retransmit	*/	

• ssthresh	<-	CWND/2	

• CWND	<-	CWND/2

Remains in congestion
avoidance after fast

retransmission

Time	Diagram
Window

t
Slow start in operation until it

reached half of previous CWND,
i.e., SSThresh

Slow-start restart: Go back to CWND of 1 MSS, but take
advantage of knowing the previous value of CWND.

Fast Retransmission Timeout SSThresh
Set to here

TCP	Flavors

• TCP	Tahoe	
• CWND	=	1	on	triple	dupACK	

• TCP	Reno	
• CWND	=	1	on	timeout	

• CWND	=	CWND/2	on	triple	dupACK	

• TCP-newReno	
• TCP-Reno	+	improved	fast	recovery	

• TCP-SACK	
• Incorporates	selective	acknowledgements

Our default assumption

Done!	

Next	lecture:	Critical	Analysis	of	TCP

TCP	Back	up	slides

Could	Base	RTO	on	RTT	Estimation

• Use	exponential	averaging	if	RTT	samples

SampleRTT = AckRcvdTime - SendPktTime
EstimatedRTT = ⍺ x EstimatedRTT + (1-⍺) x SampledRTT

0 < ⍺ <= 1

Es
tim
at
ed
RT
T

Time

SampleRTT

Exponential	Averaging	Example

EstimatedRTT = ⍺ x EstimatedRTT + (1-⍺) x SampledRTT
(Assume RTT is constant => SampleRTT = RTT)

RTT

time0 1 2 3 4 5 6 7 8 9

EstimatedRTT (α = 0.8)

EstimatedRTT (α = 0.5)

Exponential	Averaging	in	Action

Set Timeout Estimate (ETO) = 2 x EstimatedRTT

From Jacobson and Karels, SIGCOMM 1988

Jacobson/Karels	Algorithm

• Problem:	need	to	better	capture	variability	in	RTT	

• Directly	measure	deviation	

• Deviation	=	|	SampleRTT	-	EstimatedRTT|	

• Estimated	Deviation:	exponential	average	of	Deviation	

• ETO	=	EstimatedRTT	+	4	x	EstimatedDeviation

With	Jacobson/Karels

Problem:	Ambiguous	Measurements

• How	do	we	differentiate	between	the	real	ACK,	and	ACK	of	the	
retransmitted	packet?

Sampled
RTT

Original Transmission
Sampled

RTT

Retransmission

Original Transmission

Retransmission
ACK

ACK

TCP	Timers

• Two	important	quantities	

• RTO:	value	you	set	timer	to	for	timeouts		

• ETO:	current	estimate	of	appropriate	“raw”	timeout	

• Use	exponential	averaging	to	estimate	

• RTT	
• Deviation	=	|	Estimated	RTT	-	Sample	RTT	|	

• ETO	=	Estimated	RTT	+	4	x	Estimated	Deviation

Use	Only	“Clean”	Samples	for	ETO

• Only	update	ETO	when	you	get	a	clean	sample	

• Where	clean	means	ACK	includes	no	retransmitted	segments

Example

• Send	100,	200,	300	
• 100	means	packet	whose	first	byte	is	100,	last	byte	is	199	

• Receive	A200	
• A200	means	bytes	up	to	199	rep’d,	expecting	200	next	

• Clean	sample	

• 200	times	out,	resend	200,	receive	A300	

• No	clean	samples	

• Send	400,	500,	receive	A600	
• Clean	samples

Setting	RTO

• Every	time	RTO	timer	expires,	set	RTO	<-	2.RTO	

• Upto	maximum	>=	60	sec	

• Every	time	clean	sample	arrives	set	RTO	to	ETO

Example

• First	arriving	ACK	expects	100	(adv.	window=500)	
• Initialize	ETP;	RTO	=	ETO	
• Restart	timer	for	RTO	seconds	(new	data	ACK’ed)	

• Remember	TCP	only	has	one	timer,	not	timer	per	packet		

• Send	packets	100,	200,	300,	400	and	500	

• Arriving	ACK	expects	300	(A300)	
• Update	ETO;	RTO	=	ETO	
• Restart	timer	for	RTO	seconds	(new	data	ACKed)	

• Send	packets	600,	700	

• Arriving	ACK	expects	300	(A300)

Example	(cont’d)

• Timer	goes	off	

• RTO	=	2*RTO	(back	off	timer)	

• Restart	timer	for	RTO	seconds	(it	had	expired)	

• Resend	packet	300	

• Arriving	ACK	expects	800	
• Don’t	update	ETO	(ACK	includes	a	retransmission)	

• Restart	timer	for	RTO	seconds	(new	data	ACKed)	

• Send	packets	800,	900,	1000,	1100,	1200

Example	(cont’d)

• Arriving	ACK	expects	1000	
• Updates	ETO;	RTO	=	ETO	
• Restart	timer	for	RTO	seconds	(new	data	ACKed)	

• Send	packets	1300,	1400	

• …	Connection	continues…

Example

• Consider	a	TCP	connection	with:	
• CWND	=	10	packets	

• Last	ACK	was	for	packet	#	101	
• i.e.,	receiver	expecting	next	packet	to	have	seq	no	101	

• 10	packets	[101,	102,	103,	…,	110]	are	in	flight	
• Packet	101	is	dropped	
• What	ACKs	do	they	generate?	

• And	how	does	the	sender	respond?

Timeline

• ACK	101(due	to	102)	CWND	=	10	dupACK	#1	(no	xmit)	

• ACK	101(due	to	103)	CWND	=	10	dupACK	#2	(no	xmit)	

• ACK	101(due	to	104)	CWND	=	10	dupACK	#3	(no	xmit)	

• RETRANSMIT	101	ssthresh	=	5	CWND	=	5	

• ACK	101	(due	to	105)	CWND=5	(no	xmit)	

• ACK	101	(due	to	106)	CWND=5	(no	xmit)	

• ACK	101	(due	to	107)	CWND=5	(no	xmit)	

• ACK	101	(due	to	108)	CWND=5	(no	xmit)	

• ACK	101	(due	to	109)	CWND=5	(no	xmit)	

• ACK	101	(due	to	110)	CWND=5	(no	xmit)	

• ACK	111	(due	to	101)<-	only	now	can	we	transmit	new	packets	

• Plus	no	packets	in	flight	so	no	ACKs	for	another	RTT

Note that you do not
restart dupACKcounter

on same packet!

Solution:	Fast	Recovery

• Idea:	Grant	the	sender	temporary	“credit”	for	each	dupACK	so	as	to	

keep	packets	in	flight	(each	ACK	due	to	arriving	pkt)	

• If	dupACKcount	=	3	
• ssthresh	=	CWND	/	2	

• CWND	=	ssthresh	+	3	

• While	in	fast	recovery	

• CWND	=	CWND	+	1	for	each	additional	duplicate	pet	

• Exit	fast	recovery	after	receiving	new	ACK		
• Set	CWND	=	ssthresh	(which	had	been	set	to	CWND/2	after	loss)

Example

• Consider	a	TCP	connection	with:	
• CWND	=	10	packets	

• Last	ACK	was	for	packet	#	101	
• i.e.,	receiver	expecting	next	packet	to	have	seq	no	101	

• 10	packets	[101,	102,	103,	…,	110]	are	in	flight	
• Packet	101	is	dropped

Timeline

• ACK	101(due	to	102)	CWND	=	10	dupACK	#1	(no	xmit)	

• ACK	101(due	to	103)	CWND	=	10	dupACK	#2	(no	xmit)	

• ACK	101(due	to	104)	CWND	=	10	dupACK	#3	(no	xmit)	

• RETRANSMIT	101	ssthresh	=	5	CWND	=	8	(5	+	3)	

• ACK	101	(due	to	105)	CWND=9	(no	xmit)	

• ACK	101	(due	to	106)	CWND=10	(no	xmit)	

• ACK	101	(due	to	107)	CWND=11	(xmit	111)	

• ACK	101	(due	to	108)	CWND=12	(xmit	112)	

• ACK	101	(due	to	109)	CWND=13	(xmit	113)	

• ACK	101	(due	to	110)	CWND=14	(xmit	114)	

• ACK	111	(due	to	101)	CWND	=	5	(xmit	115)	<-	exiting	fast	recovery	

• Packets	111-114	already	in	flight	(and	not	sending	115)	
• ACK	112	(due	to	111)	CWND	=	5	+	1/5	<-	back	to	congestion	avoidance

TCP	“Phases”

• Slow-start	
• Enter	on	timeout	

• Leave	when	CWND	>	ssthresh	(to	Cong.	Avoid.)	

• The	>	only	applies	here…	

• Congestion	Avoidance	
• Leave	when	timeout	

• Fast	recovery	
• Enter	when	dupACK=3	
• Leave	when	New	ACK	or	Timeout

TCP	State	Machine

congestn.
avoid.

fast
recovery

slow start

Timeout

CWND > ssthresh

Timeout

Timeout
new ACK

dupACK=3 dupACK=3

new ACK

dupACK

dupACK

new ACK

dupACK

TCP	State	Machine

congestn.
avoid.

fast
recovery

slow start

Timeout

CWND > ssthresh

Timeout

Timeout
new ACK

dupACK=3 dupACK=3

new ACK

dupACK

dupACK

new ACK

dupACK

TCP	State	Machine

congestn.
avoid.

fast
recovery

slow start

Timeout

CWND > ssthresh

Timeout

Timeout
new ACK

dupACK=3 dupACK=3

new ACK

dupACK

dupACK

new ACK

dupACK

