
Computer	Networks:	
Architecture	and	Protocols

CS4450

Lecture	22	
Reliable	Transport	and	TCP

Spring	2018	
Rachit	Agarwal

Goal	of	Today’s	Lecture

• Continue	our	understanding	of	reliable	transport	conceptually	

• Understanding	TCP	will	become	infinitely	easier	

• TCP	involves	lots	of	detailed	mechanisms	

• Knowing	WHY	TCP	uses	these	mechanisms	is	most	important

2

Lets	start	with	recapping	last	lecture

Recap:	Best	Effort	Service	(L3)

• Packets	can	be	lost	
• Packets	can	be	corrupted	
• Packets	can	be	reordered	
• Packets	can	be	delayed	
• Packets	can	be	duplicated	
• …

How can you possible make anything work
with such a service model?

4

Recap:	Four	Goals	for	Reliable	Transfer

• Correctness	
• To	be	defined	

• “Fairness”	
• Every	flow	must	get	a	fair	share	of	network	resources		

• Flow	Performance	

• Latency,	jitter,	etc.	

• Utilization		
• Would	like	to	maximize	bandwidth	utilization	

• If	network	has	bandwidth	available,	flows	should	be	able	to	use	it!

5

Recap:	Complete	Correctness	Condition

A	transport	mechanism	is	“reliable”	if	and	only	if		

(a) It	resends	all	dropped	or	corrupted	packets	

(b) It	attempts	to	make	progress

6

Recap:	Solution	v1

• Send	every	packet	as	often	and	fast	as	possible…	

• Not	correct	
• if	condition	not	satisfied:	Transport	must	attempt	to	make	progress	

• No	way	to	check	whether	the	packet	was	dropped	or	corrupted	
• So,	must	continue	sending	the	same	packet	

• Showed	why	we	need	receiver	feedback

7

Recap:	Solution	v2

• Resend	packet	until	you	get	an	ACK	
• And	receiver	sends	per-packet	ACKs	until	data	finally	stops		

• Correct	
• Fair	
• Good	but	suboptimal	performance	
• Suboptimal	utilization	

• A	specific	kind	of	under-utilization:	
• The	source	is	unnecessarily	sending	the	same	packet	

• Showed	why	we	must	wait	for	an	ACK	after	sending	a	packet	
• But	how	long	shall	we	wait	for	an	ACK?	
• Indeed,	the	ACK	may	be	lost	as	well

8

Recap:	Solution	v3

• Send	packet	
• But	now,	set	a	timer	

• receiver	sends	per-packet	ACKs	
• If	sender	receives	ACK,	done	
• If	no	ACK	when	timer	expires,	resend	

• Correct	
• Fair	
• Good	but	suboptimal	performance	
• Suboptimal	utilization	

• A	different	kind	of	under-utilization		
• source	is	not	“work	conserving”:	could	send,	but	is	not	

• What	to	do	while	waiting?	
• Send	more	packets	
• How	many?

9

Window-based	Algorithms

• Very	simple	concept	

• Send	W	packets	

• When	one	gets	ACK’ed	send	the	next	packet	in	line		

• We	want	to	set	W	such	that:	

• if	I	am	sending	at	rate	=	link	bandwidth,	then	

• the	ACK	of	the	first	packet	arrives	
• exactly	when	I	just	finish	sending	the	last	of	my	W	packets	

• (assuming	same	transmission	time	for	data	and	ACK	packets)	

• Lets	me	send	as	fast	as	the	path	can	deliver…

10

RTT	x	B	~	W	x	Packet	Size

• Recall	that	Bandwidth	Delay	Product	
• BDP	=	bandwidth	x	propagation	delay	

• B	x	RTT	is	merely	2x	BDP	

• Window	sizing	rule:		

• Total	bits	in	flight	is	roughly	the	amount	of	data	that	fits	into	

forward	and	reverse	“pipes”	

• Here	pipe	is	complete	path,	not	single	link…	

• This	is	not	“detail”,	this	is	a	fundamental	concept…

bandwidth

Propagation delay

delay x bandwidth

11

Where	Are	We?

• Figured	out	correctness	condition:	
• Always	resend	lost/corrupted	packets	
• Always	try	to	make	progress	(but	can	give	up	entirely)	

• Figured	out	single	packet	case:	
• Send	packet,	set	timer,	resend	if	no	ACK	when	timer	expires	

• Some	progress	towards	multiple	packet	case:	

• Allow	many	packets	(W)	in	flight	at	once	

• And	know	what	the	ideal	window	size	is	
• RTT	x	B	/	Packet	size	

• What’s	left	to	design?

12

Three	Design	Considerations

• Nature	of	feedback	
• What	should	ACKs	tell	us	when	we	have	many	packets	in	flight	

• Detection	of	loss	

• Response	to	loss

13

ACK	Individual	Packets

The	receiver	sends	ACK	for	each	individual	packet	that	it	receives

14

Example:	

• Assume	that	packet	5	is	lost,	but	no	others		

• Stream	of	ACKs	will	be	

• 1	
• 2	
• 3	
• 4	
• 6	
• 7	
• 8	
• …

ACK	Individual	Packets

• Nature	of	feedback:	simple	-	the	receiver	ACKs	each	packet	

• Loss	detection:	simple	-	ACKs	tell	the	fate	of	each	packet	to	the	source	

• Response	to	loss:	moderate:	

• +	Retransmit	the	packet	for	which	ACK	not	received	

• +	Reordering	not	a	problem	

• +	Simple	window	algorithm	

• W	independent	single	packet	algorithms	

• When	one	finishes	grab	next	packet	

• -	Loss	of	ACK	packet	requires	a	retransmission

15

Full	Information	Feedback

• List	all	packets	that	have	been	received	
• Give	highest	cumulative	ACK	plus	any	additional	packets

16

Same	Example	(suppose	packet	5	gets	lost):	

• Same	story,	except	that	the	“hole”	is	explicit	in	each	ACK	

• Stream	of	ACKs	will	be	

• Up	to	1	
• Up	to	2	
• Up	to	3	
• Up	to	4	
• Up	to	4,	plus	6	
• Up	to	4,	plus	6,7	
• Up	to	4,	plus	6,7,8	
• …

• Nature	of	feedback:	complex	-	feedback	may	have	high	overheads	

• If	packets	1,	5,	6,	….,	100	received:	ACK(1,	5,	6,	…,100)	

• Loss	detection:	simple	-	the	source	still	knows	fate	of	each	packet	

• Response	to	loss:	simple:	

• +	Retransmit	the	packet	for	which	ACK	not	received	

• +	Reordering	not	a	problem	

• +	Simple	window	algorithm	

• -	Loss	of	ACK	does	not	necessarily	requires	a	retransmission	

• The	next	ACK	will	tell	that	the	packet	was	indeed	received	
• Resilient	form	of	individual	ACKs

17

Full	Information	Feedback

Cumulative	ACK

• Individual	ACKs	can	get	lost,	and	require	unnecessary	retransmission	

• Full	information	feedback	can	handle	lost	ACKs	but	has	high	overheads	

• Cumulative	ACKs:	a	sweet	spot	between	the	two	

• Just	the	first	part	of	full	information	feedback	

• ACK	the	highest	sequence	number	for	all	previously	received	packets

18

Cumulative	ACKs	(same	example;	say	packet	5	lost)

19

Full	information	feedback:	

• Stream	of	ACKs	will	be	

• Up	to	1	
• Up	to	2	
• Up	to	3	
• Up	to	4	
• Up	to	4,	plus	6	
• Up	to	4,	plus	6,7	
• Up	to	4,	plus	6,7,8	
• …

Cumulative	ACKs:	

• Stream	of	ACKs	will	be	

• Up	to	1	
• Up	to	2	
• Up	to	3	
• Up	to	4	
• Up	to	4	
• Up	to	4	
• Up	to	4	
• …

Tells	“some”	packet	arrived,	and	
which	packet	did	not

Tells	“which”	packet	arrived,	and	
which	packet	did	not

Loss	With	Cumulative	ACKs	(cont’d)

• Duplicate	ACKs	are	a	sign	of	loss	
• The	lack	of	ACK	progress	means	5	hasn’t	been	delivered		

• Stream	of	duplicate	ACKs	means	some	packets	are	being	delivered	
(one	for	each	subsequent	packet)	

• Response	to	loss	is	trickier…	When	shall	the	source	retransmit	packet	5?	

• Packet	may	be	delayed	(so,	source	should	wait)	

• Packet	may	be	reordered	(so,	source	should	wait)	

• Or,	packet	may	be	dropped	(source	should	immediately	retransmit)	

• Impossible	to	know	which	one	is	the	case	

• Life	lesson:	be	optimistic!	

• Until	optimism	starts	hurting	

• Solution:	retransmit	after	k	duplicate	ACKs		

• for	some	value	of	k,	depending	on	how	optimistic	you	feel!

20

Cumulative	ACKs	(how	is	reordering	handled;	large	k)

21

Receiver	events:	

• Packet	1	received	
• Packet	2	received	
• Packet	3	received	
• Packet	4	received	
• Packet	6	received	
• Packet	7	received	
• Packet	5	received	
• Packet	8	received	
• …

Cumulative	ACKs:	

• Up	to	1	
• Up	to	2	
• Up	to	3	
• Up	to	4	
• Up	to	4	
• Up	to	4	
• Up	to	7	
• Up	to	8	
• …

Cumulative	ACKs	naturally	handle	packet	reordering	
(Packet	delays	are	similar	to	reordering)

• Produce	duplicate	ACKs		
• Could	be	confused	for	loss	with	cumulative	ACKs	

• But	duplication	is	rare…

22

Receiver	events:	

• Packet	1	received	
• Packet	2	received	
• Packet	4	received	
• Packet	5	received	
• Packet	6	received	
• Packet	3	received	
• Packet	3	received	
• Packet	7	received	
• …

Cumulative	ACKs:	

• Up	to	1	
• Up	to	2	
• Up	to	2	
• Up	to	2	
• Up	to	2	
• Up	to	6	
• Up	to	6	
• Up	to	7	
• …

Source	events:	

• Packet	1	sent	
• Packet	2	sent	
• Packet	3	sent	
• Packet	4	sent	
• Packet	5	sent	
• Packet	6	sent	
• Packet	3	resent	
• Packet	7	sent	
• …

Cumulative	ACKs	(confusion	with	duplication)

Possible	Design	For	Reliable	Transport	

• Cumulative	ACKs	

• Window	based,	with	retransmissions	after		

• Timeout		

• K	subsequent	ACKs	

• This	is	correct,	high-performant	and	high-utilization	

• At	least	as	much	as	we	can	efficiently	

• How	about	fairness?

23

Fairness?	(Come	back	to	later)

• Adjust	W	based	on	losses…	

• In	a	way	that	flows	receive	same	shares	

• Short	version:	
• Loss:	cut	W	by	2	

• Successful	receipt	of	window:	W	increased	by	1

24

Overview	of	Reliable	Transport

• Window	based	self	control	separate	concerns		

• Size	of	W	

• Nature	of	feedback	
• Response	to	loss	

• Can	design	each	aspect	relatively	independently		

• Can	be	correct,	fair,	high-performant	and	high-utilization	

• All	of	these	are	important	concerns	

• But	correctness	is	most	fundamental	

• Design	must	start	with	correctness		

• Can	then	“engineer”	its	performance	with	various	hacks		

• These	hacks	can	be	“fun”,	but	don’t	let	them	distract	you

25

What	Have	We	Done	so	far?

• Started	from	first	principles	

• Correctness	condition	for	reliable	transport	

• …	to	understanding	why	feedback	from	receiver	is	necessary	(sol-v1)	

• …	to	understanding	why	timers	may	be	needed	(sol-v2)	

• …	to	understanding	why	window-based	design	may	be	needed	(sol-v3)	

• …	to	understanding	why	cumulative	ACKs	may	be	a	good	idea	

• Very	close	to	modern	TCP	

• You	are	now	ready	to	learn	TCP

26

Lets	learn	TCP

Transport	layer

• Transport	layer	offer	a	“pipe”	abstraction	to	applications	

• Data	goes	in	one	end	of	the	pipe	and	emerges	from	other	

• Pipes	are	between	processes,	not	hosts	

• There	are	two	basic	pipe	abstractions

Two	Pipe	Abstractions

• Unreliable	packet	delivery	(UDP)	
• Unreliable	(application	responsible	for	resending)	
• Messages	limited	to	single	packet	

• Reliable	byte	stream	delivery	

• Bytes	inserted	into	pipe	by	sender	
• They	emerge,	in	order	at	receiver	(to	the	app)	

• What	features	must	transport	protocol	implement	to	support	these	
abstractions?	

UDP	(Datagram	Messaging	Service)

• Sources	send	packets	

• Destinations	do	nothing,	but	receive	packets	

• If	packets	delayed/reordered/lost:		
• Meh!		

• Let	application	handle	packet	loss	(or	be	oblivious	to	drops)	
• If	application	needs	reliable	delivery,	it	must	use	reliable	transport	

• Discarding	corrupted	packets	(optional)	

• Nothing	else!	

• A	minimal	extension	of	IP

TCP	(Reliable,	In	Order	Delivery)

• Source	send	segments	

• Destinations	send	ACKs	

• Source	retransmits	lost	and/or	corrupted	segments	

• Sources	perform	Flow	control	(to	not	overflow	receiver)	

• Sources	perform	Congestion	control	(to	not	overload	network)	

• Source	and	destination	participate	in	“Connection”	set-up	and	tear-down

Connections	(Or	Sessions)

• Reliability	requires	keeping	state	
• Sender:	packets	sent	but	not	yet	ACKed,	and	related	timers	

• Receiver:	packets	that	arrived	out-of-order	

• Each	byte	stream	is	called	a	connection	or	session	

• Each	with	their	own	connection	state	
• State	is	in	hosts,	not	network

Ports

• Separate	16-bit	port	address	space	for	UDP,	TCP	

• “Well	known”	ports	(0-1023)	

• Agreement	on	which	services	run	on	these	ports	

• e.g.,	ssh:22,	http:80	
• Client	(app)	knows	appropriate	port	on	sender	
• Services	can	listen	on	well-known	ports

Multiplexing	and	Demultiplexing

• Host	receives	IP	datagrams	

• Each	datagram	has	source	and	destination	IP	address	

• Each	segment	has	source	and	destination	port	number		

• Host	uses	IP	address	and	port	numbers	to	direct	the	segment	to	

appropriate	socket

Source Port # Dest Port #

Other Header Fields

Application Data (Message)

IP	Packet	Structure

4-bit Version
4-bit Header

Length
8-bit Type of

Service
(TOS)

16-bit Total Length (Bytes)

16-bit Identification 3-bit Flags 13-bit Fragment Offset

8-bit Time to Live
(TTL)

8-bit Protocol 16-bit Header Checksum

32-bit Source IP Address

32-bit Destination IP Address

Options (if any)

Payload

IP	Packet	Structure

8-bit Type of
Service
(TOS)

16-bit Total Length (Bytes)

16-bit Identification 3-bit Flags 13-bit Fragment Offset

8-bit Time to Live
(TTL)

16-bit Header Checksum

32-bit Source IP Address

32-bit Destination IP Address

Payload

6 = TCP
7 = UDP

16-bit Source Port 16-bit Dest Port

More Transport Header Fields…

4-bit Version
4-bit Header

Length

Any	Questions?

Transmission	Control	Protocol	(TCP)

• Reliable,	in-order	delivery	
• Ensures	byte	stream	(eventually)	arrives	intact	

• In	the	presence	of	corruption,	delays,	reordering,	loss	

• Connection	oriented	
• Explicit	set-up	and	tear-down	of	TCP	session	

• Full	duplex	stream	of	byte	service	

• Sends	and	receives	stream	of	bytes,	not	messages	

• Flow	control	
• Ensures	the	sender	does	not	overwhelm	the	receiver	

• Congestion	control	
• Dynamic	adaptation	to	network	path’s	capacity

From	design	to	implementation:	major	notation	change

• Previously	we	focused	on	packets	
• Packets	had	numbers	

• ACKs	referred	to	those	numbers		

• Window	sizes	expressed	in	terms	of	#	of	packets	

• TCP	focuses	on	bytes,	thus	
• Packets	identified	by	the	bytes	they	carry	
• ACKs	refer	to	the	bytes	received	
• Window	size	expressed	in	terms	of	#	of	bytes

Basic	Components	of	Reliability

• ACKs		
• TCP	uses	byte	sequence	numbers	to	identify	payloads	

• ACKs	referred	to	those	numbers		

• Window	sizes	expressed	in	terms	of	#	of	packets	

• Timeouts	and	retransmissions	

• Can’t	be	reliable	without	retransmitting	lost/corrupted	data	

• TCP	retransmits	based	on	timeouts	and	duplicate	ACKs	

• Timeouts	based	on	estimate	of	RTT

Other	TCP	Design	Decisions	

• Sliding	window	flow	control	
• Allow	W	contiguous	bytes	to	be	in	flight	

• Cumulative	Acknowledgements	

• Selective	ACKs	(full	information)	also	supported	(ignore)	

• Set	timer	after	each	payload	is	ACK’ed	

• Timer	is	effectively	for	the	“next	expected	payload”	

• When	the	timer	goes	off,	resend	that	payload	and	wait	

• And	double	timeout	period	

• Various	tricks	related	to	“fast	retransmit”

TCP	Header

Source Port Destination Port

Sequence Number

Acknowledgement

HdrLen

Checksum

Options (variable)

Data

Urgent Pointer

0 Flags Advertised Window

TCP	Header

Source Port Destination Port

Sequence Number

Acknowledgement

HdrLen

Checksum

Options (variable)

Data

Urgent Pointer

0 Flags Advertised Window

These
should be
familiar

Segments	and	Sequence	Numbers

TCP	“Stream	of	Bytes”	Service

Byte 0
Byte 1
Byte 2
Byte 3

Byte 80

Byte 0
Byte 1
Byte 2
Byte 3

Byte 80

Application @ Host A

Application @ Host B

TCP	“Stream	of	Bytes”	Service

Byte 0
Byte 1
Byte 2
Byte 3

Byte 80

Byte 0
Byte 1
Byte 2
Byte 3

Byte 80

Application @ Host A

Application @ Host B

TCP Data

TCP Data

Segment sent when
1) Segment full (Max Segment Size)
2) Not full, but times out

TCP	Segment

• IP	Packet	
• No	bigger	than	Maximum	Transmission	Unit	(MTU)	

• E.g.,	up	to	1500	bytes	with	Ethernet	

• TCP	Packet	
• IP	packet	with	a	TCP	header	and	data	inside	
• TCP	header	>=	20	bytes	long	

• TCP	Segment	

• No	more	than	MSS	(Maximum	Segment	Size)	bytes	

• E.g.,	unto	1460	consecutive	bytes	from	the	stream	

• MSS	=	MTU	-	IP	header	-	TCP	header

IP Hdr
IP data (datagram)

TCP HdrTCP data (segment)

Sequence	Numbers

Host A

K bytes

Sequence number
= 1st byte in segment

= ISN + k

Initial Sequence Number (ISN)

TCP Data
TCP
Hdr

Host B

TCP Data
TCP
Hdr

ACK Sequence number
= next expected byte

= seqno + length(data)

ACKing	and	Sequence	Numbers

• Sender	sends	segments	(byte	stream)	

• Data	starts	with	sequence	number	X	

• Packet	contains	B	bytes	
• X,	X+1,	X+2,	…,	X+B-1	

• Upon	receipt	of	a	segment,	receiver	sends	an	ACK	

• If	all	data	prior	to	X	already	received:	
• ACK	acknowledges	X+B	(because	that	is	next	expected	byte)	

• If	highest	contiguous	byte	received	is	smaller	value	Y	

• ACK	acknowledges	Y+1	
• Even	if	this	has	been	ACKed	before

TCP	Header

Source Port Destination Port

Sequence Number

Acknowledgement

HdrLen

Checksum

Options (variable)

Data

Urgent Pointer

0 Flags Advertised Window

Starting byte offset
of data carried in

this segment

TCP	Header

Source Port Destination Port

Sequence Number

Acknowledgement

HdrLen

Checksum

Options (variable)

Data

Urgent Pointer

0 Flags Advertised Window

Acknowledgement
gives sequence

number just
beyond highest

sequence number
received in order

(“What byte is
next”)

TCP	Header

Source Port Destination Port

Sequence Number

Acknowledgement

HdrLen

Checksum

Options (variable)

Data

Urgent Pointer

0 Flags Advertised Window

Flow	Control	(Sliding	Window)

• Advertised	Window:	W	

• Can	send	W	bytes	beyond	the	next	expected	byte	

• Receiver	uses	W	to	prevent	sender	from	overflowing	buffer	

• Limits	number	of	bytes	sender	can	have	in	flight

Filling	the	Pipe

• Simple	example:	

• W	(in	bytes),	which	we	assume	is	constant	

• RTT	(in	sec),	which	we	assume	is	constant	

• B	(in	bytes/sec)	

• How	fast	will	data	be	transferred?	

• If	W/RTT	<	B,	the	transfer	has	speed	W/RTT	

• If	W/RTT	>	B,	the	transfer	has	speed	B

Advertised	Window	Limits	Rate

• Sender	can	send	no	faster	than	W/RTT	bytes/sec	

• In	original	TCP,	that	was	the	sole	protocol	mechanism	controlling	

sender’s	rate	

• What’s	missing?	

• Congestion	control	about	how	to	adjust	W	to	avoid	network	congestion	

(next	lecture)

Any	Questions?

Implementing	Sliding	Window

• Sender	maintains	a	window	

• Data	that	has	been	sent	out	but	not	yet	ACK’ed	

• Left	edge	of	window:	
• Beginning	of	unacknowledged	data	
• Moves	when	data	is	ACKed	

• Window	size	=	maximum	amount	of	data	in	flight	

• Receiver	sets	this	amount,	based	on	its	available	buffer	space	

• If	it	has	not	yet	sent	data	up	to	the	app,	this	might	be	small

TCP	Header:	What’s	left?

Source Port Destination Port

Sequence Number

Acknowledgement

HdrLen

Checksum

Options (variable)

Data

Urgent Pointer

0 Flags Advertised Window

TCP	Connection	Establishment		

and	Initial	Sequence	Numbers

Initial	Sequence	Number	(ISN)

• Sequence	number	for	the	very	first	byte	

• E.g.,	Why	not	just	use	ISN	=	0?	

• Practical	issue	
• IP	addresses	and	port	#s	uniquely	identify	a	connection	
• Eventually,	though,	these	port	#s	do	get	used	again	
• …	small	chance	an	old	packet	is	still	in	flight	

• TCP	therefore	requires	changing	ISN	
• Set	from	32-bit	clock	that	ticks	every	4	microseconds	

• …	only	wraps	around	once	every	4.55	hours	

• To	establish	a	connection,	hosts	exchange	ISNs	
• How	does	this	help?

Establishing	a	TCP	Connection

• Three-way	handshake	to	establish	connection	
• Host	A	sends	a	SYN	(open;	“synchronize	sequence	numbers”)	to	host	B	

• Host	B	returns	a	SYN	acknowledgement	(SYN	ACK)	

• Host	sends	an	ACK	to	acknowledge	the	SYN	ACK

SYN

ACK

Data
Data

SYN + ACK

A B

Each host tells its ISN to
the other host.

TCP	Header

Source Port Destination Port

Sequence Number

Acknowledgement

HdrLen

Checksum

Options (variable)

Data

Urgent Pointer

0 Flags Advertised Window

Flags:
SYN
ACK
FIN
RST
PSH
URG

See /usr/include/netinet/tcp.h on Unix Systems

Step	1:	A’s	Initial	SYN	Packet

A’s port B’s port

A’s Initial Sequence Number

(Irrelevant since ACK not set)

5 = 20B

Checksum

Options (variable)

Urgent Pointer

0 Flags Advertised Window

Flags:
SYN
ACK
FIN
RST
PSH
URG

A tells B it wants to open a connection…

Step	2:	B’s	SYN-ACK	Packet

B’s port A’s port

A’s Initial Sequence Number

ACK = A’s ISN plus 1

20B

Checksum

Options (variable)

Urgent Pointer

0 Flags Advertised Window

Flags:
SYN
ACK
FIN
RST
PSH
URG

B tells A it accepts and is ready to hear the next byte…

… upon receiving this packet, A can start sending data

Step	3:	A’s	ACK	of	the	SYN-ACK

A’s port B’s port

A’s Initial Sequence Number

ACK = B’s ISN plus 1

20B

Checksum

Options (variable)

Urgent Pointer

0 Flags Advertised Window

Flags:
SYN
ACK
FIN
RST
PSH
URG

A tells B it’s likewise okay to start sending

… upon receiving this packet, B can start sending data

Timing	Diagram:	3-Way	Handshaking

SYN, SeqNum = x

ACK, ACK = y+1

SYN + ACK, SeqNum = y, Ack = x + 1

Active Open Passive Open
Client (initiator) Server

listen()

connect()

accept()

Note:	TCP	is	Duplex

• A	TCP	connection	between	A	and	B	can	carry	data	in	both	directions	

• Packets	can	both	carry	data	and	ACK	data	

• If	the	ACK	flag	is	set,	thrn	it	is	ACKing	data	

• (details	to	follow	…)

Any	Questions?

Done	for	today	

Next	lecture:	Congestion	control

Back	up	slides	on	UDP	

(not	needed	for	exams)

UDP:	User	Datagram	Protocol

• Lightweight	communication	between	processes	

• Avoid	overhead	and	delays	of	ordered,	reliable	delivery	
• Send	messages	to	and	receive	from	a	socket		

• UDP	described	in	RFC	768	-	(1980)	
• IP	plus	port	numbers	to	support	(de)multiplexing	

• Optional	error	checking	on	the	packet	contents	
• Checksum	field	=	0	means	“don’t	verify	checksum”	

• (local	port,	local	IP,	remote	port,	remote	IP)	<—>	socket

Source Port # Dest Port #

Application Data (Message)

Checksum Length

Question

• Why	do	UDP	packets	carry	sender’s	port?

Popular	Applications	That	Use	UDP

• Some	interactive	streaming	apps	

• Retransmitting	lost/corrupted	packets	is	often	pointless	—	by	the	

time	the	packet	is	transmitted,	it’s	too	late	

• E.g.,	telephone	calls,	video	conferencing,	gaming	

• Modern	streaming	protocols	using	TCP	(and	HTTP)	

• Simple	query	protocols	like	Domain	Name	System	

• Connection	establishment	overhead	would	double	cost	

• Easier	to	have	application	retransmit	if	needed

�Address for bbc.co.uk?�

�212.58.224.131�

Back	up	slides	on	TCP	

(not	needed	for	exams)

What	if	the	SYN	Packet	Gets	Lost?

• Suppose	the	SYN	packet	gets	lost	
• Packet	is	lost	inside	the	network,	or	
• Server	discards	the	packet	(e.g.,	listen	queue	is	full)	

• Eventually,	no	SYN-ACK	arrives	
• Sender	sets	a	timer	and	waits	for	the	SYN-ACK	

• …	and	retransmits	the	SYN	if	needed	

• How	should	the	TCP	sender	set	the	timer?	

• Sender	has	no	idea	how	far	away	the	receiver	is		
• Hard	to	guess	a	reasonable	length	of	time	to	wait	

• Should	(RFCs	1122	and	2988)	use	default	of	3	seconds	
• Other	implementations	instead	use	6	seconds

SYN	Loss	and	Web	Downloads

• User	clicks	on	a	hypertext	link	
• Browser	creates	a	socket	and	does	a	“connect”	
• The	“connect”	triggers	the	OS	to	transmit	a	SYN	

• If	the	SYN	is	lost…	
• 3-4	seconds	of	delay:	can	be	very	long	
• User	may	become	impatient	

• …	and	click	the	hyperlink	again,	or	click	“reload”	

• User	triggers	an	“abort”	of	the	“connect”	
• Browser	creates	a	new	socket	and	another	“connect”	
• Essentially,	forces	a	faster	send	of	a	new	SYN	packet!	
• Sometimes	very	effective,	and	the	page	comes	quickly

Tearing	Down	the	Connection

Normal	Termination

• Finish	(FIN)	to	close	connections	
• FIN	occupies	one	byte	in	the	sequence	space	

• Other	host	ack’s	the	byte	to	confirm	

• Closes	A’s	side	of	connection,	but	not	B’s	
• Until	B	likewise	sends	a	FIN	
• Which	A	then	acks

B

A

Time

…SY
N

AC
K

Da
ta FI
N

AC
K

SYN ACK

ACK

ACK

FIN

Timeout:
Avoid reincarnation

Can retransmit FIN ACK if
ACK lost

Connection now closed

Normal	Termination,	Both	Together

• Same	as	before,	but	B	sets	FIN	with	their	ack	of	A’s	FIN
B

A

Time

…SY
N

AC
K

Da
ta FI
N

AC
K

SYN ACK

ACK

FIN+ACK

Timeout:
Avoid reincarnation

Can retransmit FIN ACK if
ACK lost

Connection now closed

Abrupt	Termination

• A	sends	a	RESET	(RST)	to	B	
• E.g.,	because	app.	Process	on	A	crashed	

• That’s	it	
• B	does	not	ack	the	RST	
• This,	RST	is	not	delivered	reliably	
• And,	any	data	in	flight	is	lost	
• But,	if	B	sends	anything	more,	will	elicit	another	RST

B

A

Time

…SY
N

AC
K

Da
ta RS

T

RS
T

SYN ACK

ACK

Data

TCP	State	Transitions

CLOSED

LISTEN

SYN_RCVD SYN_SENT

ESTABLISHED

CLOSE_WAIT

LAST_ACKCLOSING

TIME_WAIT

FIN_WAIT_2

FIN_WAIT_1

Passive open Close

Send/SYN
SYN/SYN + ACK

SYN + ACK/ACK

SYN/SYN + ACK

ACK

Close/FIN

FIN/ACKClose/FIN

FIN/ACKACK + FIN/ACK
Timeout after two
segment lifetimesFIN/ACK

ACK

ACK

ACK

Close/FIN

Close

CLOSED

Active open /SYN

Data, ACK exchanges are
in here

A	Simpler	View	of	the	Client	Side

CLOSED

SYN_SENT

ESTABLISHED

FIN_WAIT_1

FIN_WAIT_2

TIME_WAIT

SYN (Send)

Rcv. SYN + ACK,
Send ACK

Send FINRcv. ACK, Send
Nothing

Rcv. FIN,
Send ACK

TCP	Header

Source Port Destination Port

Sequence Number

Acknowledgement

HdrLen

Checksum

Options (variable)

Data

Urgent Pointer

0 Flags Advertised Window

TCP	Header:	What’s	left?

Source Port Destination Port

Sequence Number

Acknowledgement

HdrLen

Checksum

Options (variable)

Data

Urgent Pointer

0 Flags Advertised Window

Number of 4-byte
words in TCP

header;
5 = no options

“Must be Zero”
6 bits reserved

TCP	Header:	What’s	left?

Source Port Destination Port

Sequence Number

Acknowledgement

HdrLen

Checksum

Options (variable)

Data

Urgent Pointer

0 Flags Advertised Window

Used with URG
flag to indicate

urgent data (not
discussed further)

