
Computer	Networks:	
Architecture	and	Protocols

CS4450

Lecture	21	
Reliable	Transport

Spring	2018	
Rachit	Agarwal

1



Goal	of	Today’s	Lecture

• Understanding	reliable	transport	conceptually	
• What	are	the	fundamental	aspects	of	reliable	transport	

• Back	to	architectural	principles	for	one	lecture	

• The	goal	is	not	to	understand	TCP	
• TCP	involves	lots	of	detailed	mechanisms,	covered	later	

• Ground	rules	for	discussion	
• No	mention	of	TCP	

• No	mention	of	detailed	practical	issues	

• Focus	only	on	“ideal”	world	of	packets	and	links

2



You	must	think	for	yourself

• Today’s	lecture	requires	you	to	engage	
• How	would	I	design	a	reliable	service	

• The	key	to	this	course	is	focusing	on	fundamentals	

• Yes,	you	would	eventually	have	to	know	some	details	

• But	those	are	easy	once	you	get	the	basic	concepts	

• I	will	ask	questions,	want	you	to	think	about	them	

• If	you	think	you	already	know	this,	you	are	wrong	
• If	you	think	you	don’t	know	enough,	you	are	wrong	

• Two	life	lessons:		
• (1)	focus	on	fundamentals	

• (2)	lack	of	familiarity	is	no	barrier	to	fundamentals

3



Decisions	and	Their	Principles

• How	to	break	system	into	modules?	

• Dictated	by	layering	

• Where	are	modules	implemented?	

• Dictated	by	End-to-End	Principle	

• Where	state	is	stored?	

• Dictated	by	fate-sharing

4



Today	We	Design	Reliable	Delivery

• The	end-to-end	principle	tells	us?	
• Put	reliability	in	the	end-host,	not	the	network	

• Layering	dictates	putting	reliability	in	what	layer?	
• In	L4,	above	networking	layer	
• L4	focusses	on	process-to-process	delivery	(“flow”)	

• Fate	sharing	tells	us?	
• Keep	all	reliability	state	in	ends,	not	in	network

5



Best	Effort	Service	(L3)

• Packets	can	be	lost	
• Packets	can	be	corrupted	
• Packets	can	be	reordered	
• Packets	can	be	delayed	
• Packets	can	be	duplicated	
• …

How can you possible make anything work 
with such a service model?

6



Making	Best	Effort	Service	Work

• Engineer	network	so	that	average	case	is	decent	
• You	can’t	make	guarantees,	but	the	operator	must	try…	

• Engineer	apps	so	they	can	tolerate	the	worst	cast	
• They	don’t	have	to	thrive,	they	just	can’t	die	

• A	classical	case	of	architecting	for	flexibility	
• And	then	engineering	for	performance	

• Internet	enabled	app	innovation	and	competition	

• Only	the	hardly	survived,	and	doomsayers	were	ignored

7



Reliable	Transport	is	Necessary

• Some	app	semantics	involve	reliable	transport	

• E.g.,	file	transfer	

• Layer	3	and	below	provide	only	unreliable	packet	delivery	

• Today’s	question:	
• How	can	we	build	a	reliable	transport	service	on	top	of	arbitrary	
unreliable	packet	delivery?	

• A	central	challenge	in	bridging	the	gap	between	
• The	abstractions	application	designers	want	
• The	abstractions	networks	can	easily	support

8



Important	Distinctions

• For	functionality	implemented	in	network:	

• Keep	minimal	(easy	to	build,	broadly	applicable)	

• For	functionality	implemented	in	the	application:	

• Keep	minimal	(easy	to	write)	

• Restricted	to	application-specific	functionality	

• Functionality	implemented	in	“network	stack”	

• The	shared	networking	code	on	the	host	
• This	relieves	burden	from	both	application	and	network	

• This	is	where	reliability	belongs

9



Two	Different	Statements

• Some	applications	need	reliable	service	

• This	means	that	the	applications	writers	should	be	able	to	assume	
this,	to	make	their	job	easier	

• The	network	must	provide	reliable	service	

• This	contends	that	end-hosts	cannot	implement	this	functionality,	
so	the	network	must	provide	it	

• Today	we’re	making	the	first	statement	and	refuting	the	second…	

• And	this	simple	observation	is	what	the	advocates	of	reliable	
networks	(as	in	telephony)	never	understood

10



Challenge	For	Today

• Building	a	stack	that	supports	reliable	transfer		
• So	that	individual	applications	don’t	need	to	deal	with	packet	
losses,	etc.	

• What	mechanisms	can	we	put	in	the	transport	layer	to	provide	reliability?		

• Reliability	is	focused	on	single	“flow”		
• Flow:	stream	of	packets	between	two	processes	

• Usually	defined	using	the	5-tuple:	
• (sourceIP,	destIP,	sourcePort,	destPort,	protocol)

11



Fundamental	Systems	Question

• How	to	build	reliable	services	over	unreliable	components	

• File	systems,	databases,	etc.	

• Reliable	transport	is	the	simplest	example	of	this

12



Four	Goals	for	Reliable	Transfer

• Correctness	
• To	be	defined	

• “Fairness”	
• Every	flow	must	get	a	fair	share	of	network	resources		

• Flow	Performance	

• Latency,	jitter,	etc.	

• Utilization		
• Would	like	to	maximize	bandwidth	utilization	

• If	network	has	bandwidth	available,	flows	should	be	able	to	use	it!

13



Start	With	Transfer	of	a	Single	Packet

• We	can	later	worry	about	larger	files,	but	in	the	beginning	it	is	cleaner	
to	focus	on	this	simple	case

14



Correctness	Condition

• Routing	had	a	clean	correctness	condition		

• We	want	same	kind	of	“if	and	only	if”	characterization	of	“correct”	

reliable	transport	designs	

• This	condition	is	for	the	design	to	be	correct,	not	the	best	performant	

• One	obvious	requirement:	

• Transport	never	claims	to	have	delivered	data	that	wasn’t	delivered…	

• But	we	need	more	than	that.	What?

15



Correctness	Condition?

• How	about:	“Packet	is	always	delivered	to	receiver”?	

• i.e.,	Transport	is	reliable	if	and	only	if	packets	are	always	delivered	to	
the	receiver…	

• Isn’t	that	simple?

16



WRONG!

• What	if	network	is	partitioned?	

• Partitioned	means	that	the	network	is	broken	into	two	or	more	
disconnected	components…	

• We	can’t	claim	a	transport	design	is	incorrect	if	it	doesn’t	work	in	a	
partitioned	network!	

• After	all,	there	is	no	way	to	reach	the	destination!

17



Correctness	Condition?

• Packet	is	delivered	to	receiver	if	and	only	if	its	possible	to	deliver	packet

18



WRONG!

• If	the	network	is	only	available	at	one	instant	of	time,	only	an	Oracle	
would	know	when	to	send	

• We	can’t	claim	a	transport	design	is	incorrect	if	it	doesn’t	know	the	
unknowable…	

• So	we	need	to	focus	on	what	the	transport	design	is	trying	to	do,	not	
what	it	actually	accomplishes

19



Correctness	Condition?

• Resend	packet	if	and	only	if	the	previous	transmission	was	lost	or	
corrupted	

• This	is	better	because	it	refers	to:		
• what	the	design	does	(which	it	can	control)	
• not	whether	it	always	succeeds	(which	it	can’t)

20



WRONG!

• Impossible	

• “Coordinated	Attack”	over	an	unreliable	network	

• Consider	two	cases:	
• Packet	delivered;	all	packets	from	receiver	are	dropped	

• Packet	dropped;	all	packets	from	receiver	are	dropped	

• They	are	indistinguishable	to	sender	
• In	both	cases,	packet	was	sent,	and	no	feedback	at	all	
• Does	it	resend,	or	not?

21



Correctness	Condition?

• Packet	is	always	resent	if	the	previous	transmission	was	lost	or	corrupted	

• Packet	may	be	resent	at	other	times	

• Note:	
• This	invariant	gives	us	a	simple	criterion	for	deciding	if	an	
implementation	is	correct	

• Efficiency	and	simplicity	are	separate	criteria

22



Almost	Right!

• What’s	wrong	with	it?	

• An	implementation	that	never	sent	the	packet	at	all	is	reliable	according	
to	the	definition.	

23



Complete	Correctness	Condition

• A	transport	mechanism	is	“reliable”	if	and	only	if		

(a) It	resends	all	dropped	or	corrupted	packets	

(b) It	attempts	to	make	progress	

• Making	progress	means:	

• If	there	is	data	to	send,	transport	eventually	attempts	to	send	data	

• Very	important:	“eventually	attempts”!	

• It	should	not	be	blocked	for	ever	

• And,	it	may	not	succeed,	but	it	must	attempt	

• Example:	If	there	are	ten	packets	to	send,	transport	can’t	just	send	
the	first	five	and	then	stop	for	ever

24



Complete	Correctness	Condition

• A	transport	mechanism	is	“reliable”	if	and	only	if		

(a) It	resends	all	dropped	or	corrupted	packets	

(b) It	attempts	to	make	progress	

• Sufficient	(“if”):	transport	algorithm	will	keep	trying	to	deliver	packets	

that	have	not	yet	reached	the	destination	

• Necessary	(“only	if”):	if	it	ever	lets	a	packet	go	undelivered	without	
trying	again,	or	never	tries	to	send	a	packet	when	all	others	have	been	

delivered,	it	isn’t	reliable

25



Note!

• A	transport	mechanism	can	“give	up”,	but	must	announce	this	to	

application	

• If	the	transport	mechanism	has	tried	for	some	period	to	deliver	the	
data,	and	has	not	succeeded:	

• It	might	decide	that	it	is	better	to	give	up	

• And	applications	can	reinitiate	data	transfer	
• That	is	allowed…	

• But	it	can	never	falsely	claim	to	have	delivered	a	packet	

26



We	have	Correctness	Condition

• How	do	we	achieve	it?	

• First	let’s	deal	with	the	issue	of	packet	corruption

27



Back	to	Correctness	Condition

• How	do	we	achieve	it?	

• Focus	on	single-packet	solutions

28



Four	Goals	for	Reliable	Transfer

• Correctness	

• “Fairness”	
• Every	flow	must	get	a	fair	share	of	network	resources		

• Flow	Performance	

• Latency,	jitter,	etc.	

• Utilization		
• Would	like	to	maximize	bandwidth	utilization	

• If	network	has	bandwidth	available,	flows	should	be	able	to	use	it!

29



Solution	v1

• Send	every	packet	as	often	and	fast	as	possible…	

• Is	it	correct	
• No.		
• Why?	

• The	“if”	condition	is	not	satisfied:	
(a) Transport	must	attempt	to	make	progress	

• No	way	to	check	whether	the	packet	was	dropped	or	corrupted	
• So,	must	continue	sending	the	same	packet

30



What’s	missing?

• Feedback	from	receiver!	

• If	receiver	does	not	respond,	no	way	for	sender	to	tell	when	to	stop	
resending	

• Cannot	achieve	correctness	without	feedback

31



Forms	of	Feedback

• ACK:	Yes,	I	got	a	packet	

• NACK:	No,	I	did	not	get	the	packet	

• When	is	NACK	a	natural	idea?	

• Packet	Corruption	(I	got	packet#5	but	it	was	corrupted)	

• Ignore	NACKs	for	rest	of	the	lecture…

32



Solution	v2

• Resend	packet	until	you	get	an	ACK	
• And	receiver	sends	per-packet	ACKs	until	data	finally	stops		

• Correct?	
• Yes:		

• All	dropped/corrupted	packets	will	be	retransmitted	
• The	transport	will	attempt	to	make	progress	

• Fair?	
• Over	long-term,	yes:	

• all	sources	will	get	an	equal	chance	to	use	network	resources	

• Flow	performance?	
• Good	but	not	necessarily	optimal		

• Some	packets	may	be	retransmitted	unnecessarily	

• Efficiency:		
• suboptimal;	packets	retransmitted	unnecessarily33



Solution	v3

• Send	packet	
• But	now,	set	a	timer	

• When	receiver	gets	packet,	sends	ACK	

• If	sender	receives	ACK,	done	
• If	no	ACK	when	timer	expires,	resend	

• Still	correct,	and	fair	
• Performance	would	argue	for	small	timeout	

• Utilization	would	argue	for	larger	timeout	

• May	want	to	increase	timer	each	time	you	try	

• May	want	to	cap	the	number	of	retries	

• Problems	with	this	design?

34



Have	“Solved”	the	Single	Packet	Case

• Send	packet	
• Set	a	timer	

• If	no	ACK	when	timer	goes	off,	resend	packet	

• And	reset	timer	

• Tradeoff	between	performance	and	utilization	in	selection	of	timeout:	

• Too	small:	unnecessary	retransmissions	(underutilization)	

• Too	large:	waiting	unnecessarily	(poor	performance)

35



Multiple	Packets

• Service	model:	reliable	stream	of	packets	

• Hand	up	contiguous	block	of	packets	to	application		

• Why	not	use	single-packet	solution?	

• Send	the	next	packet	once	the	first	one	has	been	delivered	
• Problem:	Only	one	packet	in	flight	at	a	time	

• Low	Effective	throughput:	Packet	Size	/	RTT	

• Use	window	based	approach	
• Allow	for	a	window	of	W	packets	in-flight	at	any	time	(unack’ed)	

• Slide	the	window	as	packets	are	ack’ed	
• Sliding	window	implies	W	packets	are	continuous

36



Window-based	Algorithms

• Very	simple	concept	

• Send	W	packets	

• When	one	gets	ACK’ed	send	the	next	packet	in	line		

• It	really	is	that	simple	(until	we	got	to	TCP)	

• Will	consider	several	variations…	

• But	first…

37



How	Big	Should	the	Window	be?

• Windows	serve	three	purposes	

• Taking	advantage	of	the	bandwidth	of	the	links	
• Limiting	bandwidth	used	by	a	flow	(congestion	control)	

• Limiting	the	amount	of	buffering	needed	at	the	receiver	

• Why	do	receivers	need	to	buffer	packets?	

• Answer:	packet	re-ordering	(discussed	later)	

• If	we	ignore	all	but	the	first	goal,	then	we	want	to	keep	the	sender	
always	sending	(in	the	ideal	case)		

• RTT:	from	sending	first	packet	until	received	first	ACK	

• Condition:		
• RTT	x	B	~	W	x	Packet	Size

38



What	does	this	mean?

• B	is	the	minimum	link	bandwidth	along	the	path	

• Obviously	shouldn’t	send	faster	than	that	
• Don’t	want	to	send	slower	than	that	(for	first	goal)	

• We	want	to	set	W	such	that:	

• if	I	am	sending	at	rate	B,	then	

• the	ACK	of	the	first	packet	arrives	
• exactly	when	I	just	finish	sending	the	last	of	my	W	packets	

• Lets	me	send	as	fast	as	the	path	can	deliver…

39



RTT	x	B	~	W	x	Packet	Size

• Recall	that	Bandwidth	Delay	Product	
• BDP	=	bandwidth	x	propagation	delay	

• B	x	RTT	is	merely	2x	BDP	

• Window	sizing	rule:		

• Total	bits	in	flight	is	roughly	the	amount	of	data	that	fits	into	

forward	and	reverse	“pipes”	

• Here	pipe	is	complete	path,	not	single	link…	

• This	is	not	“detail”,	this	is	a	fundamental	concept…

bandwidth

Propagation delay

delay x bandwidth

40



Where	Are	We?

• Figured	out	correctness	condition:	
• Always	resend	lost/corrupted	packets	
• Always	try	to	make	progress	(but	can	give	up	entirely)	

• Figured	out	single	packet	case:	
• Send	packet,	set	timer,	resend	if	no	ACK	when	timer	expires	

• Some	progress	towards	multiple	packet	case:	

• Allow	many	packets	(W)	in	flight	at	once	

• And	know	what	the	ideal	window	size	is	
• RTT	x	B	/	Packet	size	

• What’s	left	to	design?

41



Three	Design	Considerations

• Nature	of	feedback	
• What	should	ACKs	tell	us	when	we	have	many	packets	in	flight	

• Detection	of	loss	

• Response	to	loss

42



Possible	Feedback	From	Receiver

• Ideas?

43



ACK	Individual	Packets

• Strengths	
• Know	fate	of	each	packet	
• Reordering	not	a	problem	

• Simple	window	algorithm	

• W	independent	single	packet	algorithms	

• When	one	finishes	grab	next	packet	

• Weaknesses?	

• Loss	of	ACK	packet	requires	a	retransmission

44



Full	Information	Feedback

• List	all	packets	that	have	been	received	
• Give	highest	cumulative	ACK	plus	any	additional	packets	

• If	packets	1,	2,	3,	5,	6	received:	send	ACK(3,	5,	6)	

• Strengths?	
• As	much	information	as	you	could	hope	for	

• Resilient	form	of	individual	ACKs	

• Weaknesses?	

• Could	require	sizable	overhead	in	bad	cases	
• Feasible	if	only	small	holes	

• If	packets	1,	5,	6,	….,	100	received:	ACK(1,	5,	6,	…,100)

45



Cumulative	ACK

• ACK	the	highest	sequence	number	for	which	all	previous	packets	have	
been	received	
• Implementations	often	send	back	“next	expected	packet”,	but	that’s	
just	a	detail	

• Strengths?	
• Resilient	to	lost	ACKs	

• Weaknesses?	

• Confused	by	reordering	
• Incomplete	information	about	which	packets	have	arrived

46



Detecting	Loss	

• If	packet	times	out,	assume	it	is	lost…	

• How	else	can	you	detect	loss?

47



Loss	With	Individual	ACKs

• Assume	that	packet	5	is	lost,	but	no	others		

• Stream	of	ACKs	will	be	

• 1	
• 2	
• 3	
• 4	
• 6	
• 7	
• 8	
• …

48



Loss	With	Individual	ACKs

• Could	resend	packet	when	k	“subsequent	packets”	are	received	

• Response	to	loss	
• Resend	missing	packet	

• Continue	window	based	protocol

49



Loss	With	Full	Information

• Same	story,	except	that	the	“hole”	is	explicit	in	each	ACK	

• Stream	of	ACKs	will	be	

• Up	to	1	
• Up	to	2	
• Up	to	3	
• Up	to	4	
• Up	to	4,	plus	6	
• Up	to	4,	plus	6,7	
• Up	to	4,	plus	6,7,8	
• …

50



Loss	With	Full	Information

• Could	resend	packet	when	k	“subsequent	packets”	are	received		

• Response	to	loss	
• Resend	missing	packet	

• Continue	window-based	protocol

51



Loss	With	Cumulative	ACKs

• Assume	packet	5	is	lost,	but	no	others	

• Stream	of	ACKs	will	be	

• 1	
• 2	
• 3	
• 4	
• 4	(Sent	when	packet	6	arrives)	
• 4	(Sent	when	packet	7	arrives)	
• 4	(Sent	when	packet	8	arrives)	
• …

52



Loss	With	Cumulative	ACKs	(cont’d)

• Duplicate	ACKs	are	a	sign	of	an	isolated	loss	
• The	lack	of	ACK	progress	means	5	hasn’t	been	delivered		

• Stream	of	duplicate	ACKs	means	some	packets	are	being	delivered	

(one	for	each	subsequent	packet)	

• Therefore	could	trigger	resend	upon	receiving	k	duplicate	ACKs	

• But	response	to	loss	is	trickier…

53



Loss	With	Cumulative	ACKs	(cont’d	2)

• Two	choices	
• Send	missing	packet	and	optimistically	assume	that	subsequent	
packets	have	arrived	

• i.e.,	increase	W	by	the	number	of	duplicate	ACKs	

• Send	missing	packet,	wait	for	ACK	

• Timeout-detected	losses	also	problematic	

• If	packet	5	times	out,	packet	6	is	about	to	timeout	also	

• Do	you	resend	both?	
• Do	you	resend	5	and	wait?	
• …

54



Cumulative	ACKs

• They	make	no	sense,	except	as	a	cheap	alternative	to	full	information		

• Less	state	than	full	information	

• More	resilient	than	individual	ACKs	

• But	ambiguity	in	feedback	leads	to	many	problems	

• Have	other	packets	arrived?		

• Makes	retransmission	and	congestion	window	management	hard		

• Will	deal	with	these	issues	when	we	come	to	TCP

55



All	The	Bad	Things	Best	Effort	Can	Do

• Packets	can	be	lost	

• Packets	can	be	corrupted	

• Packets	can	be	reordered	

• Packets	can	be	delayed	

• Packets	can	be	duplicated

56



Effect	of	Reordering?

• For	all	designs	this	looks	like	“subsequent	ACKs”	

• This	can	be	mistaken	for	packet	loss	

• Hard	to	realize	the	difference	between	these	packet	arrival	patterns:	
• 1,	2,	3,	4,	6,	7,	8,	9,…	
• 1,	2,	3,	4,	6,	7,	8,	9,	5,	10,…

57



Effect	of	Long	Delays?

• Possible	timeouts	(for	all	designs)

58



Effect	of	Duplication

• Produce	duplicate	ACKs		
• Could	be	confused	for	loss	with	cumulative	ACKs	

• But	duplication	is	rare…

59



Effect	of	Duplication

• Produce	duplicate	ACKs		
• Could	be	confused	for	loss	with	cumulative	ACKs	

• But	duplication	is	rare…

60



Possible	Design	For	Reliable	Transport	

• Full	information	ACKs	

• Window	based,	with	retransmissions	after		

• Timeout		

• K	subsequent	ACKs	

• This	is	correct,	high-performant	and	high-utilization	

• How	about	fairness?

61



Fairness?	(Come	back	to	later)

• Adjust	W	based	on	losses…	

• In	a	way	that	flows	receive	same	shares	

• Short	version:	
• Loss:	cut	W	by	2	

• Successful	receipt	of	window:	W	increased	by	1

62



Overview	of	Reliable	Transport

• Window	based	self	control	separate	concerns		

• Size	of	W	

• Nature	of	feedback	
• Response	to	loss	

• Can	design	each	aspect	relatively	independently		

• Can	be	correct,	fair,	high-performant	and	high-utilization

63



Many	Implementation	Choices

• Feedback	from	receiver:	ACKs	vs	NACKs	

• Can	NACKs	alone	achieve	correctness	
• Can	ACKs	alone	achieve	correctness	

• Variations	on	ACKs	
• Full	information	

• Individual	packets	
• Cumulative	(TCP)	

• When	to	resend	

• Timeout	

• Duplicate	ACKs	
• NACKs

64



Implementation	Choices

• These	implementation	choices	affect:	

• Performance		

• Utilization	
• Fairness	
• ..	

• These	are	important	concerns	

• But	correctness	is	more	fundamental	

• Design	must	start	with	correctness		

• Can	then	“engineer”	its	performance	with	various	hacks		

• These	shacks	can	be	“fun”,	but	don’t	let	them	distract	you

65



What	Have	We	Done	Today?

• Gone	from	first	principles	

• Correctness	condition	for	reliable	transport	

• …	to	design	for	single	packets	

• …	to	design	for	multiple	packets	

• Very	close	to	modern	TCP	

• …	to	radically	different	designs	
• Which	could	replace	TCP	

• All	done	by	you,	in	75	minutes

66



We	tried	to	understand:	

Why	is	TCP	designed	the	way	it	is	designed!	

Why	is	almost	always	the	most	important	question!!!

67


