
Computer	Networks:	
Architecture	and	Protocols

CS4450

Lecture	19	
MPLS,	Multicast

Spring	2018	
Rachit	Agarwal

Traffic	Engineering	(TE)

● Connectivity	is	necessary	but	not	sufficient	

● Need	to	also	provide	performance	
● Requires	that	links	on	the	path	not	be	overloaded	

● otherwise,	high	queueing	delay	

● provide	reasonable	bandwidth	to	connections	by	spreading	load	
● TE	is	a	way	of	distributing	load	on	the	network	

● i.e.,	not	all	packets	travel	the	“shortest	path”	
● One	way	to	do	this:	spread	load	over	MPLS	paths

Multiprotocol	Label	Switching	(MPLS)

● Operators	wanted	more	flexibility	in	routing	traffic	

● Normal	routing	just	used	destination	address…	
● Wanted	ability	to	route	on	larger	aggregates	

● First	decide	if	flow	belongs	to	aggregate,	then	route	aggregate	

● Example:	all	traffic	from	LA	to	NY	follow	same	path	
● Wanted	ability	to	route	at	finer	granularity	

● Not	all	packets	with	same	destination	take	same	path	
● Solution:	insert	a	“label”	before	IP	header	

● Route	based	on	that	label

MPLS	Header

Using	MPLS

● Make	a	distinction	between	edge	and	core	routers	

● Edge	routers	inspect	IP	header,	insert	MPLS	label	

● Core	routers	route	based	on	MPLS	label	
● Must	set	up	forwarding	state	for	MPLS	labels	

● Done	in	a	variety	of	ways,	for	a	variety	of	goals	
● Supporting	failover	paths,	TE,…

How	MPLS	Works

Theoretical	Model	of	Carrier	Network

IP Everywhere

Actual	View	of	Most	Carrier	Networks

IP EverywhereMPLS
Core

IP Edge

Another	Case	of	Edge/Core	Split	

● Edge:	has	all	the	intelligence/functionality	

● Core:	dumb	plumbing	providing	connectivity	
● An	example	of	modularity:	

● Keep	core	simple,	fast,	cheap	(but	has	to	be	distributed)	

● Let	edge	be	complex	and	slower	(no	distribution)	

● Distinction	should	be	recognized	more	broadly	
● Made	edge	software	on	x86s,	core	hardware

MPLS	is	widely	used

● Extremely	important	practically,	not	intellectually	
● Because	it	is	not	tightly	tied	to	a	single	purpose	

● Used	for	VPNs,	TE,	etc.	

● Each	use	is	ad	hoc,	rather	than	overall	paradigm	

● Like	the	IPv6	flow	ID:	all	mechanism,	no	policy	
● If	IPv6	happened	sooner,	we	wouldn’t	need	MPLS

MPLS	and	TE

● MPLS:
● Enables operators to nail up paths between two points

● Think of an MPLS tunnel as a virtual link (layer 2.5)
● Most modern backbones are built out of MPLS

● With backup paths to deal with failure
● Load is spread by having multiple MPLS paths between any two

points, and then adjusting how load is split between them….

Multicast

Motivating	Example:	Internet	Radio

● Internet	concert	
● More	than	1M	simultaneous	online	listeners	

● Could	we	do	this	with	parallel	unicast	streams?	
● Bandwidth	usage	

● If	each	stream	was	1Mbps,	concert	requires	>	1	Tbps	
● Coordination	

● Hard	to	keep	track	of	each	listener	as	they	come	and	go	
● Multicast	addresses	both	problems….	

Unicast	approach	does	not	scale…

Backbone
ISP

Broadcast
Center

Instead	build	data	replication	trees

•Copy data at routers
•At most one copy of a data packet per link

•Routers keep track of groups in real-time
•Routers compute trees and forward packets along them
•Multicast: single sent packet delivered to many dests

Backbone
ISP

Broadcast
Center

•LANs implement link layer
multicast by broadcasting

Multicast	and	Layering

● Multicast can be implemented at different layers
● Link layer

● e.g. Ethernet multicast
● Network layer

● e.g. IP multicast
● Application layer

● e.g. End system multicast
● Each layer has advantages and disadvantages

● Link: easy to implement, limited scope
● IP: global scope, efficient, but hard to deploy
● Application: less efficient, easier to deploy [not covered]

Multicast	Implementation	Issues

● How is join implemented?

● How is send implemented?
● How much state is kept and who keeps it?

Link	Layer	Multicast

● Join group at multicast address G
● NIC = Network Interface Card
● NIC normally only listens for packets sent to unicast MAC

address A and broadcast address ff:ff:ff:ff:ff:ff

● After being instructed to join group G, NIC also listens for
packets sent to multicast address G

● Send to group G

● Packet treated like a broadcast packet, sent everywhere
● Scalability:

● State: Only host NICs keep state about who has joined

● Bandwidth: Requires broadcast over subnet
● Limitation: just over single subnet

Network	Layer	(IP)	Multicast

● Performs inter-network multicast routing
● Relies on link layer multicast for intra-network routing

● Portion of IP address space reserved for multicast
● 2^28 addresses for entire Internet

● Open group membership
● Anyone can join (sends IGMP message)

● Internet Group Management Protocol
● Privacy preserved at application layer (encryption)

● Anyone can send to group
● Even nonmembers (mistake!)

Requirements	for	the	design

● Receivers join group G (using IGMP message)
● Internet Group Management Protocol

● Senders send packet to destination G
● With no knowledge of who the receivers are

● Intradomain network routes packets to all receivers
● All the responsibility placed on the network

● Must be much more efficient than flooding

● Need not deal with groups across multiple domains

IP	Multicast	Routing

● Intra-domain (know the basics here)
! Source Specific Tree: Distance Vector Multicast Routing

Protocol (DVRMP)
! Shared Tree: Core Based Tree (CBT)

! Single-Sender: SSM
● Inter-domain [not covered]

● Very difficult…..

Distance	Vector	Multicast	Routing	Protocol

● Elegant extension to DV routing
● Will cover two main steps in DVRMP

● Reverse Path Flooding

● Truncation (pruning)
! Discussion is drastically oversimplified!

General	Strategy

● Start by flooding packets along a tree
● Flooding in the Internet requires some thought

● In particular, how do you flood without loops?
● Prune portions of tree that don’t have members

● So only the first few packets of a multicast flow wasted

General	Tactics

● Construct a tree from a source to all destinations
● This is done by using the reverse-paths from all destinations

to the source

● That is, packets from multicast source S follows paths that
unicast routing would take from each D to S.

● Why reverse paths?
● Forward paths from source to all destinations not guaranteed

to be a tree (why?)

● Reverse paths are set of paths from all destinations to
source, and this must be a tree (for dest-based routing)

● Packets sent along tree (copied when tree splits)

Reverse	Path	Flooding	(RPF)

● If incoming link is shortest path to source
● Send on all links except incoming

● Otherwise, drop
● Issues:

● Every link receives each multicast packet
● Some links (LANs) may receive multiple copies
● Can be avoided by knowing your parent in r-tree

s:2

s

s:1

s:3

s:2

s:3

r

RPF	is	not	enough!

● This is a broadcast algorithm – the traffic goes everywhere

● Need to “Prune” the tree when there are subtrees with no group
members

● Networks know they have members based on IGMP messages
● Add the notion of “leaf” nodes in tree

● They start the pruning process
● Don’t worry how you know you are a leaf…
● (poisoned reverse is involved!)

Sending	Joins

● Hosts that want to join group send IGMP message
● “I want to join group G”

● To first-hop router

● This router knows whether it has local members
● If it gets flooded messages from a source S, but has no local

members (and is a leaf node), then it prunes itself from tree.

Pruning	Details

● Prune (Source,Group) at leaf if no members

● Send Non-Membership Report (NMR) towards source
● If all children of router R send NMR, prune (S,G)

● Propagate prune for (S,G) to parent of R
● On timeout:

● Prune dropped
● Flow is reinstated

● Down stream routers re-prune
● Note: a soft-state approach

DVMRP	Review

● Packets are initially broadcast everywhere

● Using reverse paths to prevent loops
● Leaf nodes send prunes if they have no members

● Prunes travel toward source (using forward path)
! Result

● When all prunes have been sent (and none have timed out),
then all packets from source S travel the subtree that
connects S to all members of the group
● In the reverse direction!

Distance	Vector	Multicast	Scaling

● State requirements:

● O(Sources × Groups) active state
● How to get better scaling?

● Hierarchical Multicast

● Core-based Trees
● What you need to know:

● General strategy
● Resulting paths (per source delivery trees)

Core-Based	Trees	(CBT)

● Pick “rendezvous point” for the group (called core)

● The mapping between group G and core IP address is known
(somehow)

● Build tree from all members to that core
● (using forward-path unicast routing)

● Shared tree
● More scalable:

● Reduces routing table state from O(S x G) to O(G)
● No initial flooding

Sending	Packets

● Members:

● Send on tree (broadcast)
● Nonmembers:

● Encapsulate packet and send to core
● Using core’s IP address

● Core then sends it on tree

Establishing	Shared	Tree

● Group members: M1, M2, M3Send on tree (broadcast)

core

M1

M2 M3

control (join) messages

Use	Shared	Tree	for	Delivery

● Group members: M1, M2, M3
● M1 sends data

core

M1

M2 M3

control (join) messages
data

Core-Based	Tree	Approach

● Build tree from all members to core or root

● Spanning tree of members
● Packets are broadcast on tree

● We know how to broadcast on trees
● Requires knowing core per group

● This is a problem in many settings
● Core must exist before members join

● But what if core is far from members?
● What you need to know: everything.

Special-Case:	Single-Source	Mcast

● For each SSM group, only a single sender

● Which serves as the core (perfectly located!)
● Well-suited to live event usage

● A natural single source
● Potential large audience for simultaneous reception

Barriers	to	Multicast

● Hard to change IP
● Multicast means changes to IP

● Unicast IP remains same, but IP now must include
multicast

● Details of multicast were very hard to get right
● Years-long effort with many brilliant people

● Deering, Jacobson, Estrin, Handley, etc.
● Not always consistent with ISP economic model

● Charging done at edge, but single packet from edge can
explode into millions of packets within network

Review	of	Multicast

● DVMRP:
● Per-source trees (reverse path!)
● Flood then prune

● Issues: scalability (state) and flooding
● CBT:

● Shared tree
● Built by receiver joins sent to core
● Any sender can reach tree by going to core

What	Makes	Interdomain	Mcast	Hard?

● Can’t flood then prune in a global network
● If you use CBT, where do you place cores?

● Can be solved using large key-value stores
● And a hierarchical set of cores

Multicast	vs	Caching

● If delivery need not be simultaneous, caching (as in CDNs) works
well, and needs no change to IP

● This is true for almost all online applications except:
● Gaming
● Videoconferences
● …..

Any	Questions

Network	Security

My	definition	of	“network	security”

● “network security” ≠ “security in a connected world”

● If network magically transfers data between known parties, there
is no “network security” problem

● There are many other security problems
● Distributed system (if A lies to B, does system crash?)
● Operating system (Can A’s system be compromised?)

● …
● But these may not require network solutions

A	few	non-network	security	issues	

● Browser “drive-by” exploits

● Server vulnerabilities

● Spam

● Phishing

● Account theft
● ….

Two	Kinds	of	Network	Security	Goals

● Core concern: accomplishing communication
● Getting the data from A to B intact

● Knowing it was from intended party, to intended party
● Also: Keeping bystanders as ignorant as possible

● Making sure C, D, etc. don’t know what A and B did

Core	Security	Requirements

● Availability: Will the network deliver data?

● Authentication: Who is sending me data?

● Integrity: Do messages arrive in original form?
● Provenance: Who is responsible for this data?

● Not who sent the data, but who created it
● Important because communication may not be directly

between actors, but through intermediaries
● (i.e., did these headlines really come from CNN?)

Keeping	Bystanders	Ignorant

● Privacy: can others read data I send?

● Anonymity: can I avoid revealing my identity?

● Freedom from traffic analysis: can someone tell when I am
sending and to whom?

● Today, will ignore latter two and focus on privacy

List	of	Goals

● Availability

● Authentication

● Integrity

● Provenance
● Privacy

Any	Questions

Public	Key	Crypto	Provides

● Way to authenticate yourself: signature
● Way to ensure privacy: encryption

● with rcvr’s public key

● Way to verify integrity: hash function (or MAC)

● Way to verify provenance: signature
● In short, crypto provides all but availability!

Protecting	Availability

How	can	availability	be	harmed?

● Problems in basic protocols

● Persistent outages due to natural events
● External vulnerabilities in basic protocols

● Attackers can prevent protocols from functioning
● Internal vulnerabilities in basic protocols

● If attackers compromise routers, can prevent network from
functioning

● Denial-of-service attacks
● Overwhelming one or more resources

How	Can	We	Avoid	These?

● Problems in basic protocols

! Good design and careful operation
● External vulnerabilities in basic protocols

! Good design and careful operation
● Internal vulnerabilities in basic protocols

! Good design and careful operation
● Denial-of-service attacks

! Requires new thinking….

Denial	of	Service	(DoS)

● Attacker prevents legitimate users from using something
(network, server)

● Motives?

● Retaliation, extortion, commercial advantage, etc.
● Often done via some form of flooding

● Overwhelming some resource….
● Can be done at different semantic levels

● Network: clog a link or router with a huge rate of packets
● Transport: overwhelm victim’s ability to handle connections
● Application: overwhelm victim’s ability to handle requests

Mechanism

● Attacker sends traffic to victim as fast as possible

● It will often use (many) spoofed source addresses …

● Using multiple hosts (zombies) yields a Distributed Denial-of-
Service attack, aka DDoS

● Traffic is varied (sources, destinations, ports, length) so no simple
filter matches it

● If attacker has enough zombies, often doesn’t need to spoof -
victim can’t shut them down anyway! :-(

Unfortunate	Fact

● Easy to identify hosts that participate in attacks.
● But they typically have well-meaning owners

● They’ve just been compromised
● Cannot just disconnect all compromised hosts!

● Customers would sue their provider!
● Need to allow them to function, while preventing them from

bringing down the Internet…

Attack	on	Dyn:	10/21/2016

● Dyn provides DNS service to many companies
● Attack took the form of DNS lookup requests

● From tens of millions of IP addresses

● Internet-connected devices (printers, cameras, baby
monitors, etc.) infected with Mirai malware.

● Estimated load: 1.2 terabits per second
● Defense:

● Anycast, internal filtering, external scrubbing, ??

Any	Questions

Defending	Against	DDoS

● In short, we have no systematic defense
● Can do ad hoc scrubbing

● Try to identify attacking traffic and block it
● While allowing real traffic through

● But this is a losing game….
● How could we change the architecture to defend against DDoS?

Architectural	Approaches	to	DDoS?

● Talk to your neighbors. 3 minutes.
● If you could redesign architecture, how would you design it so

that DDoS attacks could be:
● Mitigated
● Prevented

● Blocked
● And if you don’t have to change the architecture, even better!

Fight-Fire-With-Fire	(mitigation)

● Typically
● Victim has N customers whose traffic is overwhelmed by M

attackers, even though M<<N
● Bringing down the victim’s server

● Because customers send intermittently, attackers are sending
at full line rate

● “Crazy” Defense
! Don’t slow attackers down, just speed up customers
● Ask customers to send more rapidly, and then randomly filter

traffic at server to serve only a small fraction
● Customers get their share of the service N/(N+M)
● Can’t do better than that without distinguishing attackers from

customers

Capabilities	(prevention)

● Internet is “default-on”: Anyone can send to anyone without
asking for permission

● One way to deal with DDoS is to force people to ask for
permission to send (get “capabilities”)

● When attackers start up, can refuse to renew their permission to
send

● Complicated design, huge change to architecture
● Yuck. Cure worse than disease….

Shut-Up	Packets	(blocking)

● Embed logic in NIC to handle shut-up requests

● NIC out of reach of OS, can’t be easily compromised

● If host A sends a shut-up packet to host B, then host B’s NIC
prevents B from sending packets to host A’s address (for some
period of time)

● Easy to support in NIC. Subtle points in design.

● Doesn’t shut down hosts. Merely allows destinations to say
“don’t send traffic to me”

● Best approach so far for DDoS in my opinion

Any	Questions

