
Computer	Networks:	
Architecture	and	Protocols

CS4450

Lecture	18	
DNS	and	HTTP

Spring	2018	
Rachit	Agarwal

What	is	DNS?

● User	has	name	of	entity	she/he	wants	to	access	
● E.g.,	www.cnn.com	

● Content,	host,	etc.	
● However,	Internet	routes	and	forwards	requests	based	on	IP	addresses	

● Need	to	convert	name	(e.g.,	www.cnn.com)	to	an	IP	address	
● Domain	Name	System	(DNS)	

● Provides	the	mapping	from	name	to	IP	address	
● User	asks	DNS:	what	is	the	IP	address	for	www.cnn.com	
● DNS	responds:	157.166.255.18

http://www.cnn.com
http://www.cnn.com
http://www.cnn.com

Correctness	Requirements

● Addresses	can	change	underneath	
● Move	www.cnn.com	to	4.125.91.21	

● Humans/Applications	should	be	unaffected	
● Name	could	map	to	multiple	IP	addresses	

● www.cnn.com	to	multiple	replicas	to	the	Web	site	
● To	enable	“load	balancing”	or	reduced	latency	

● Replicas	may	see	different	load	(eg,	due	to	geographic	location)	

● Some	replicas	may	be	closer	to	the	user	
● Multiple	names	for	the	same	address	

● E.g.,	www.cnn.com	and	cnn.com	should	map	to	same	IP	addresses

http://movewww.cnn.com
http://www.cnn.com
http://www.cnn.com
http://cnn.com

Goals	and	Approach

● Goals	
● Correctness	(from	previous	slide)	
● Scaling	(names,	users,	updates,	etc.)	
● Ease	of	management	(uniqueness	of	names,	etc.)	
● Availability	and	consistency		

● Fast	lookups	
● Approach:	Three	intertwined	hierarchies	

● Hierarchical	Namespace:	exploit	structure	in	names	
● Hierarchical	Administration:	hierarchy	of	authority	over	names	

● Hierarchical	Infrastructure:	hierarchy	of	DNS	servers

Hierarchical	Namespace

● “Top	Level	Domains”	(TLDs)	are	at	the	top	
● Domains	are	subtrees	

● E.g.	.edu,	cornell.edu,	cs.cornell.edu	
● Name	is	leaf-to-root	path	

● systems.cs.cornell.edu

root

edu com gov mil org net uk fr

cornell mit

cs ece

systems

…

http://cornell.edu
http://cs.cornell.edu
http://systems.cs.cornell.edu

Hierarchical	Administration

● A	zone	corresponds	to	an	administrative	
authority	responsible	for	contiguous	portion	
of	hierarchy	
● Cornell	controls	*.cornell.edu	
● CS	controls	*.cs.cornell.edu		

● Name	collisions	trivially	avoided	
● Each	domain	can	ensure	this	locally

root

edu com gov mil org net uk fr

cornell mit

cs ece

systems

…

ICANN/IANA

http://cornell.edu
http://cs.cornell.edu

Hierarchical	Infrastructure

● Top	of	hierarchy:	root	

● Location	hardwired	into	other	servers	
● Next	level:	Top	Level	Domain	(TLD)	servers	

● .com,	.edu,	etc.	
● Bottom	level:	Authoritative	DNS	servers	

● Actually	do	the	mapping	
● Can	be	maintained	locally	or	by	a	service	provider	

Per	Domain	Availability	

● DNS	Servers	are	replicated	
● Primary	and	secondary	name	servers	are	required	
● Name	service	available	if	at	least	one	replica	is	up	

● Queries	can	be	load-balanced	among	replicas	
● Try	alternate	servers	on	timeout	

● Exponential	backoff	when	retrying	the	same	server

Who	Knows	What?

● Every	server	knows	address	of	root	name	server	

● Root	servers	know	the	address	of	all	TLD	servers	

● Every	node	knows	the	address	of	all	children	

● An	authoritative	DNS	server	stores	name-to-address	mappings	
(“resource	records”)	for	all	DNS	names	in	the	domain	that	it	has	
authority	for		

● Therefore,	each	server:	
● Stores	only	a	subset	of	the	total	DNS	database	(scalable!)	
● Can	discover	server(s)	for	any	portion	of	the	hierarchy

Benefits	of	This	Approach

● Scalable	in	names,	updates,	lookups,	users	

● Highly	available:	domains	replicate	independently	

● Extensible:	can	add	TLDs	just	by	changing	root	db	
● Autonomous	administration:	

● Each	domain	manages	own	names	and	servers	
● And	can	further	delegate	
● Easily	ensures	uniqueness	of	names	
● And	consistency	of	databases

DNS	Records	(details)

● DNS	servers	store	resource	records	(RRs)	

● RR	is	(name,	value,	type,	TTL)	
● Type	=	A:	(->	Address)	

● Name	=	hostname	

● Value	=	IP	address	
● Type	=	NS:	(->	Name	Server)	

● Name	=	domain	
● Value	=	name	of	dns	server	for	domain

● Type	=	MXL	(->	Main	eXchanger)	
● name	=	domain	in	email	address	

● value	=	name(s)	of	main	server(s)	
● Type	=	CNAME:	(->	Canonical	NAME)	

● Name	=	alias	

● Value	is	“canonical”	name	
● Type	=	PTR:	(->	Pointer)	

● name	is	reversed	IP	
● value	is	corresponding	hostname

DNS	Records	(details	continued)

Inserting	Resource	Records	into	DNS

● Example:	you	just	created	company	“FooBar”	
● You	get	a	block	of	IP	addresses	from	your	ISP	

● E.g.,	212.44.9.128/25	
● Register	foobar.com	at	registrar	(e.g.,	GoDaddy)		

● Provide	registrar	with	names	and	IP	addresses	of	your	authoritative	
name	server(s)	

● Registrar	inserts	RR	pairs	into	the	.com	TLD	server:	
● (foobar.com,	dns1.foobar.com,	NS)	

● (dns1.foobar.com,	212.44.9.129,	A)	
● Store	resource	records	in	your	server	dns1.foobar.com	

● e.g.,	type	A	record	for	www.foobar.com	
● e.g.,	type	MX	record	for	foobar.com

http://dns1.foobar.com

Distributed	Hierarchical	Database

com edu org ac uk zw arpa

root

bar

west east

foo my

ac

cam

usr

in-
addr

generic domains country domains

my.east.bar.edu usr.cam.ac.uk

Top-Level Domains (TLDs)

Everything scales but the root!

DNS	Root

● Located in Virginia, USA
● How do we make the root scale?

 Verisign, Dulles, VA

DNS	Root	Servers

● 13 root servers (see http://www.root-servers.org/)

● Labeled A through M
● How can we seamlessly scale this further?

B USC-ISI Marina del Rey, CA
L ICANN Los Angeles, CA

E NASA Mt View, CA
F Internet Software
 Consortium
 Palo Alto, CA

I Autonomica, Stockholm

K RIPE London

M WIDE Tokyo

A Verisign, Dulles, VA
C Cogent, Herndon, VA
D U Maryland College Park, MD
G US DoD Vienna, VA
H ARL Aberdeen, MD
J Verisign

http://www.root-servers.org/

Anycast

● Routing	finds	shortest	paths	to	destination	
● If	several	locations	are	given	the	same	address:	

● Network	will	deliver	the	packet	to	closest	location	with	that	address	
● This	is	called	“anycast”	

● No	modification	of	routing	is	needed	for	this….	
● Allows	for	seamless	replication	of	resources	

● Any	problems	with	this	approach?

DNS	Root	Servers

● 13	root	servers	(see	http://www.root-servers.org/)	

● Labeled	A	through	M	
● Replication	via	any-casting	(localized	routing	for	addresses)

B USC-ISI Marina del Rey, CA
L ICANN Los Angeles, CA

E NASA Mt View, CA
F Internet Software
 Consortium
 Palo Alto, CA

I Autonomica, Stockholm

K RIPE London

M WIDE Tokyo

A Verisign, Dulles, VA
C Cogent, Herndon, VA
D U Maryland College Park, MD
G US DoD Vienna, VA
H ARL Aberdeen, MD
J Verisign

http://www.root-servers.org/

Using	DNS

● Two	components	
● Local	DNS	servers	

● Resolver	software	on	hosts	
● Local	DNS	server	(“default	name	server”)	

● Usually	near	the	end	hosts	that	use	it	

● Local	hosts	configured	with	local	server	(e.g,	/etc/resolv.conf)	or	
learn	server	via	DHCP	

● Client	application	
● Obtain	DNS	name	(e.g.,	from	the	URL)	
● Do	gethostbyname()	to	trigger	resolver	code	
● Which	then	sends	request	to	local	DNS	server

20

DNS	client  
(me.cs.cornell.edu)

root	servers

(mydns.cornell.edu) .edu	servers

nyu.edu		
servers

Local	DNS	
server

21

DNS	client  
(me.cs.cornell.edu)

root	servers

.edu	servers

nyu.edu		
servers

w
w
w.nyu.edu?

(mydns.cornell.edu)

Local	DNS	
server

22

root	
DNS	server

DNS	client  
(me.cs.cornell.edu)

.edu	servers

nyu.edu		
servers

(mydns.cornell.edu)

w
w
w.nyu.edu?

Local	DNS	
server

23

root	
DNS	server

DNS	client  
(me.cs.cornell.edu)

.edu	servers

nyu.edu		
servers

(mydns.cornell.edu)

w
w
w.nyu.edu?

Local	DNS	
server

24

root	
DNS	server

recursive	DNS	query

DNS	client  
(me.cs.cornell.edu)

(mydns.cornell.edu)
.edu	servers

nyu.edu		servers

w
w
w.nyu.edu?

Local	DNS	
server

25

root	
DNS	server

DNS	client  
(me.cs.cornell.edu)

(mydns.cornell.edu)
.edu	servers

nyu.edu		servers

Local	DNS	
server

root	
DNS	server

iterative	DNS	query

DNS	client  
(me.cs.cornell.edu)

(mydns.cornell.edu)
.edu	servers

nyu.edu		servers

Where is .edu?

Where is www.nyu.edu?

Where is nyu.edu?

Local	DNS	
server

DNS	Protocol

● Query	and	Reply	messages	
● Both	with	the	same	message	format	

● see	text	for	details	
● Client-Server	interaction	on	UDP	Port	53	

● Spec	supports	TCP	too,	but	not	always	implemented	

● Reliability	via	repeating	requests	on	timeout	
● Resolution	is	almost	always	“iterative”

Goals

● Scaling	(names,	users,	updates,	etc.)	

● Yes	
● Ease	of	management	(uniqueness	of	names,	etc.)	

● Yes	
● Availability	and	consistency	

● Yes	
● Fast	lookups	

● ??

root	
DNS	server

iterative	DNS	query

DNS	client  
(me.cs.cornell.edu)

(mydns.cornell.edu)
.edu	servers

nyu.edu		servers

Where is .edu?

Where is www.nyu.edu?

Where is nyu.edu?

Local	DNS	
server

DNS	Caching

● How	DNS	caching	works	
● DNS	servers	cache	responses	to	queries	
● Responses	include	a	“time	to	live”	(TTL)	field	

● Server	deletes	cached	entry	after	TTL	expires	
● Why	caching	is	effective	

● The	top-level	servers	very	rarely	change	
● Popular	sites	visited	often	->	local	DNS	server	often	has	the	
information	cached

Questions?

The	Web

The	Web	–	Precursor

● 1967,	Ted	Nelson,	Xanadu:	
● A	world-wide	publishing	network	that	would	allow	information	to	
be	stored	not	as	separate	files	but	as	connected	literature	

● Owners	of	documents	would	be	automatically	paid	via	electronic	
means	for	the	virtual	copying	of	their	documents		

● Coined	the	term	“Hypertext”	
● Influenced	research	community	

● Who	then	missed	the	web…..

Ted Nelson

http://images.google.com/imgres?imgurl=http://www.janelanaweb.com/digitais/imagens/nelson.gif&imgrefurl=http://www.janelanaweb.com/digitais/alquimistanelson.html&h=204&w=150&sz=55&tbnid=IDD4qt-_U98J:&tbnh=97&tbnw=72&start=15&prev=/images?q=ted+nelson&hl=en&lr=&sa=N

The	Web	–	Precursor

● Physicist	trying	to	solve	real	problem	

● Distributed	access	to	data	
● World	Wide	Web	(WWW):	a	distributed	database	of	“pages”	linked	
through	Hypertext	Transport	Protocol	(HTTP)	
● First	HTTP	implementation	-	1990		

● Tim	Berners-Lee	at	CERN	
● HTTP/0.9	–	1991	

● Simple	GET	command	for	the	Web	
● HTTP/1.0	–1992	

● Client/Server	information,	simple	caching	
● HTTP/1.1	-	1996	

Tim Berners-Lee

http://www.w3.org/Press/Stock/Berners-Lee/2001-eur-head-quarter.jpg

Web	Components

● Infrastructure:	
● Clients	
● Servers	

● Proxies	
● Content:	

● Individual	objects	(files,	etc.)	

● Web	sites	(coherent	collection	of	objects)	
● Implementation	

● URL:	naming	content	
● HTTP:	protocol	for	exchanging	content

URL	Syntax

protocol http, ftp, https, smtp, rtsp, etc.

hostname DNS name, IP address

port Defaults to protocol’s standard port 
e.g. http: 80 https: 443

directory path Hierarchical, reflecting file system

resource Identifies the desired resource

Can also extend to program executions:
http://us.f413.mail.yahoo.com/ym/ShowLetter?

box=%40B%40Bulk&MsgId=2604_1744106_29699_1123_1261_0_28917_3552_1289
957100&Search=&Nhead=f&YY=31454&order=down&sort=date&pos=0&view=a&he
ad=b

protocol://hostname[:port]/directorypath/resource

Web	and	DNS

● URLs	use	hostnames	

● Thus,	content	names	are	tied	to	specific	hosts	

● Why	is	this	a	problem?	
● Makes	persistence	of	names	problematic…

Hyper	Text	Transfer	Protocol	(HTTP)

● Client-server	architecture	
● Server	is	“always	on”	and	“well	known”	

● Clients	initiate	contact	to	server	
● Synchronous	request/reply	protocol		

● Runs	on	top	of	transport	layer,	Port	80	

● Stateless	
● ASCII	format

GET /somedir/page.html HTTP/1.1
Host: www.someschool.edu
User-agent: Mozilla/4.0
Connection: close
Accept-language: fr
(blank line)

● Request line: method, resource, and protocol version
● Request headers: provide information or modify request
● Body: optional data (e.g., to “POST” data to the server)

request line

header
 lines

carriage return line feed
indicates end of message

HTTP	request	message

● Status line: protocol version, status code, status phrase
● Response headers: provide information
● Body: optional data

HTTP/1.1 200 OK
Connection close
Date: Thu, 06 Aug 2006 12:00:15 GMT
Server: Apache/1.3.0 (Unix)
Last-Modified: Mon, 22 Jun 2006 ...
Content-Length: 6821
Content-Type: text/html
(blank line)
data data data data data ...

status line
(protocol, status code,
status phrase)

header lines

data
e.g., requested HTML file

HTTP	response	message

HTTP	is	Stateless	

● Each	request-response	treated	independently	
● Servers	not	required	to	retain	state	for	HTTP	

● The	application	may	have	lots	of	state,	but	not	HTTP	
● Good:	Improves	scalability	on	the	server-side	

● Failure	handling	is	easier	
● Can	handle	higher	rate	of	requests	

● Order	of	requests	doesn’t	matter	(to	HTTP)	
● Bad:	Some	applications	need	persistent	state	

● Need	to	uniquely	identify	user	or	store	temporary	info	
● e.g.,	Shopping	cart,	user	profiles,	usage	tracking,	…

Question

● How does a stateless protocol keep state?

State	in	a	Stateless	Protocol:	Cookies

● Client-side	state	maintenance	
● Client	stores	small	state	on	behalf	of	server	
● Client	sends	state	in	future	requests	to	the	server	

● Can	provide	authentication

Request

Response
Set-Cookie: XYZ

Request
Cookie: XYZ

HTTP	Performance	Issues

Performance	Goals

● User	
● Fast	downloads	

● High	availability	
● Content	provider	

● Happy	users	(hence,	above)	

● Cost-effective	infrastructure			
● Network	(secondary)		

● Avoid	overload

Caching	and	replication	
resolve	most	of	these	issues

HTTP	Performance

● Most	Web	pages	have	multiple	objects	

● e.g.,	HTML	file	and	a	bunch	of	embedded	images	
● How	do	you	retrieve	those	objects	(naively)?	

● One	item	at	a	time	

● New	connection	per	(small)	object!	
● Requires	2RTTs	worth	of	latency	per	object

Improving	HTTP	Performance

● Persistent	Connections		
● Maintain	connection	across	multiple	requests	

● Including	transfers	subsequent	to	current	page	

● Client	or	server	can	tear	down	connection	
● Performance	advantages:	

● Avoid	overhead	of	connection	set-up	and	tear-down	

● Default	in	HTTP/1.1

Improving	HTTP	Performance

● Pipelined	Requests	and	Responses	

● Batch	requests	and	responses	to	reduce	
the	number	of	packets

Client Server

Request 1
Request 2
Request 3

Transfer 1

Transfer 2

Transfer 3

Questions?

Improving	HTTP		Performance:	Caching

● Why	does	caching	work?	

● Exploits	locality	of	reference	
● How	well	does	caching	work?	

● Very	well,	up	to	a	limit	
● File	popularity	has	high	peak	but	long	tail	

● Large	overlap	in	highly	popular	content	

● But	many	unique	requests	
● A	universal	story!	

● Hit	rate	of	cache	grows	logarithmically	with	size

Improving	HTTP		Performance:	Caching	-	How?

● Modifier	to	GET	requests:	

● If-modified-since	—	returns	“not	modified”	if	resource	not	
modified	since	specified	time	

● Client	specifies	“if-modified-since”	time	in	request	

● Server	compares	this	against	“last	modified”	time	of	resource	

● Server	returns	“Not	Modified”	if	resource	has	not	changed	

● ….	or	a	“OK”	with	the	latest	version	otherwise

Improving	HTTP		Performance:	Caching	-	How?

● Modifier	to	GET	requests:	

● If-modified-since	—	returns	“not	modified”	if	resource	not	
modified	since	specified	time	

● Response	header:	
● Expires	—	TTL:	how	long	it’s	safe	to	cache	the	resource	
● No-cache	—	ignore	all	caches;	always	het	resource	directly	from	
server

Typical	Caching	Interaction

● Client	issues	request	for	object	
● If	it	is	in	local	client	cache:	

● If	within	TTL,	respond	to	client	
● If	not	within	TTL,	send	if-modified-since	to	server	

● If	server	has	updated	copy,	it	sends	it	

● If	not,	server	responds	saying	that	it	doesn’t	
● If	not	in	local	client	cache:	

● Send	request	to	server	
● This	request	may	pass	through	other	caches,	which	use	a	similar	
algorithm

Improving	HTTP		Performance:	Caching	-	Where?

● Options	
● Client		
● Forward	proxies		
● Reverse	proxies	
● Content	Distribution	Network	

Improving	HTTP		Performance:	Caching	-	Where?

● Baseline:	Many	clients	transfer	same	information		
● Generate	unnecessary	server	and	network	load	
● Clients	experience	unnecessary	latency

Server

Clients

Tier-1 ISP

ISP-1 ISP-2

Caching	with	Reverse	Proxies

● Cache	documents	close	to	server		
● Decrease	server	load	

● Typically	done	by	content	provider

Clients

Backbone ISP

ISP-1 ISP-2

Server

Reverse proxies

Caching	with	Forward	Proxies

● Cache	documents	close	to	clients		
● Reduce	network	traffic	and	decrease	latency	

● Typically	done	by	ISPs	or	enterprises

Clients

Backbone ISP

ISP-1 ISP-2

Server

Reverse proxies

Forward proxies

Improving	HTTP		Performance:	Replication

● Replicate	popular	Web	site	across	many	machines	
● Spreads	load	on	servers	
● Places	content	closer	to	clients	

● Helps	when	content	isn’t	cacheable	
● Problem:		Want	to	direct	client	to	particular	replica	

● Balance	load	across	server	replicas	

● Pair	clients	with	nearby	servers	
● Common	solution:		

● DNS	returns	different	addresses	based	on	client’s	geo	 
location,	server	load,	etc.

Content	Distribution	Networks

● Caching	and	replication	as	a	service	
● Large-scale	distributed	storage	infrastructure	(usually)	administered	by	
one	entity	

● e.g.,	Akamai	has	servers	in	20,000+	locations	
● Combination	of	(pull)	caching	and	(push)	replication	

● Pull:		Direct	result	of	clients’	requests		

● Push:		Expectation	of	high	access	rate	
● Also	do	some	processing	

● Handle	dynamic	web	pages	
● Transcoding	

CDN	Example	—	Akamai

● Akamai	creates	new	domain	names	for	each	client	

● e.g.,	a128.g.akamai.net	for	cnn.com	

● The	CDN’s	DNS	servers	are	authoritative	for	the	new	domains	
● The	client	content	provider	modifies	its	content	so	that	embedded	
URLs	reference	the	new	domains.	
● “Akamaize”	content	

● e.g.:	http://www.cnn.com/image-of-the-day.gif	becomes	http://
a128.g.akamai.net/image-of-the-day.gif	

● Requests	now	sent	to	CDN’s	infrastructure…

Cost-Effective	Content	Delivery

● General	theme:	multiple	sites	hosted	on	shared	physical	infrastructure		
● efficiency	of	statistical	multiplexing	
● economies	of	scale	(volume	pricing,	etc.)	

● amortization	of	human	operator	costs		
● Examples:		

● Web	hosting	companies		
● CDNs	
● Cloud	infrastructure

Questions?

Backup	slide:	History	of	DNS

● Originally:	per-host	file	hosts.txt	in	/etc/hosts	
● SRI	(Menlo	Park)	kept	master	copy	
● Downloaded	regularly	

● Flat	namespaces	
● As	the	Internet	grew	this	system	broke	down	

● SRI	couldn’t	handle	the	load	
● Conflicts	in	selecting	names	

● Hosts	had	inaccurate	copies	of	hosts.txt	
● Domain	Name	System	(DNS)	invented	to	fix	this	

● First	server	implementation	done	by	4	UCB	students!

DNS	Measurements	(MIT	data	from	2000)

● What is being looked up?
● ~60% requests for A records
● ~25% for PTR records
● ~5% for MX records

● ~6% for ANY (wildcard) records
● How long does it take?

● Median ~100msec (but 90th percentile ~500msec)

● 80% have no referrals; 99.9% have fewer than four
● Query packets per lookup: ~2.4

● But this is misleading….

DNS	Measurements	(MIT	data	from	2000)

● Does DNS give answers?
● ~23% of lookups fail to elicit an answer!
● ~13% of lookups result in NXDOMAIN (or similar)

● Mostly reverse lookups
● Only ~64% of queries are successful!

● How come the web seems to work so well?
● ~ 63% of DNS packets in unanswered queries!

● Failing queries are frequently retransmitted
● 99.9% successful queries have ≤2 requests

Moral	of	the	Story

● The Internet was designed to be highly resilient.

● No matter what goes wrong, it tries to recover
! In a highly resilient system, many things can be going wrong

without you noticing it!

DNS	Measurements	(MIT	data	from	2000)

● Top 10% of names accounted for ~70% of lookups

● Caching should really help!
● 9% of lookups are unique

● Cache hit rate can never exceed 91%
● Cache hit rates ~ 75%

● But caching for more than 10 hosts doesn’t add much

A	Common	Pattern…..

● Distributions of various metrics (file lengths, access patterns,
etc.) often have two properties:
● Large fraction of total metric in the top 10%

● Sizable fraction (~10%) of total fraction in low values
● In an exponential distribution

● Large fraction is in top 10%

● But low values have very little of overall total
● Lesson: in networking, have to pay attention to both ends of

distribution (high peak and long tail)
● Here, caching helps, but not a panacea

Why	not	name	content	directly?

● How do you know where to send the request?

● How do you scale?
● How do you trust the response?

● Requesting host

● Network
● How would you design it?

Scorecard:	Getting	n	Small	Objects

! Time dominated by latency

● One at a time: ~2n RTT

● M concurrent: ~2[n/m] RTT

● Persistent: ~(n+1) RTT

● Pipelined: ~2 RTT

● Pipelined/Persistent: ~2RTT first time, RTT later

Scorecard:	Getting	n	Large	Objects

! Time dominated by bandwidth

● One at a time: ~nF/B
● M concurrent: it depends

● If more flows get no additional bandwidth: ~nF/B
● If shared with large population of users: ~[n/m] F/B

● Where each TCP connection gets the same bandwidth
● Pipelined and/or Persistent: ~nF/B

● The only thing that helps is getting more bandwidth

