
Computer	Networks:	
Architecture	and	Protocols

CS4450

Lecture	13	
THE	Internet	Protocol

Spring	2018	
Rachit	Agarwal



Reflection

• The	events	in	last	few	days	have	left	me	sad!	

• Such	events	must	be	condemned	

• They	have	no	place	in	our	society	

• Please	do	not	lose	faith	
• If	you	are	feeling	overwhelmed	

• Please	express	your	thoughts	
• Talk	to	friends,	family,	me,	professionals	

• My	office	door	is	always	open

2



Announcements

• Please	fill	out	the	feedback	
• I	emailed	a	link	

• If	you	have	a	conflict	with	prelims/finals	

• Let	me	know	by	03/15	

• I’ll	do	everything	I	can	to	accommodate!

3



Quiz	1	distribution

4

Mean 17.875

Median 19

Std.	deviaMon 3.344

 0

 5

 10

 15

 20

 25

 30

0-3 4-7 8-11 12-15 16-19 20-20

Nu
m

be
r o

f s
tu

de
nt

s

Grade (out of 20)

Quiz 2 Grades



Goals	for	Today’s	Lecture

• Acknowledge:	
• We	have	studied	a	lot	of	protocols	in	last	few	lectures	

• If	you	do	not	understand	how	they	fit	together	
• Don’t	worry;	you’ll	soon!	
• In	couple	of	lectures,	we’ll	come	back	to	bigger	picture	

• The	Internet	Protocol

5



Network	Layer

• THE	functionality:	delivering	the	data	

• THE	protocol:	Internet	Protocol	(IP)	
• To	achieve	its	functionality,	IP	protocol	has	three	responsibilities	

• Addressing	hosts	
• Forwarding	packets	(actually	datagrams)	

• Routing	(link-state,	distance	vector;	several	more	lectures)



Routing	versus	Forwarding

• Routing:	“control	plane”	
• Computing	paths	the	packets	will	traverse	

• Distributed	protocol	leads	to	state	at	each	router	
• Can	be	done	slowly	(tens	of	milliseconds)	

• But	must	scale	to	size	of	network!	

• Forwarding:	“data	plane”	
• Directing	a	packet	toward	the	destination	
• Individual	switch/router	use	their	routing	tables	
• Must	be	done	quickly	(nano	seconds)	

• Different	goals,	different	constraints,	different	mechanisms	

• So	far	we	have	learnt	about	the	first	one



Internet	Protocol

• THE	functionality:	delivering	the	data	

• THE	protocol:	Internet	Protocol	(IP)	
• To	achieve	its	functionality,	IP	protocol	has	three	responsibilities	

• Unifying	protocol



What	is	“designing”	a	protocol?

• Specifying	the	syntax	of	its	messages	

• Format	

• Specifying	their	semantics	

• Meaning	

• Responses



What	is	Designing	IP?

• Syntax:	format	of	packet	

• Nontrivial	part:	packet	“header”	
• Rest	is	opaque	payload	(why	opaque?)	

• Semantics:	meaning	of	header	fields	

• Required	processing

Opaque PayloadHeader



Packet	Header	as	Interface

• Think	of	packet	header	as	interface	
• Only	way	of	passing	information	from	packet	to	switch	

• Designing	interfaces:	
• What	task	are	you	trying	to	perform?	

• What	information	do	you	need	to	accomplish	it?	

• Header	reflects	information	needed	for	basic	tasks



What	Tasks	Do	We	Need	to	Do?

• Read	packet	correctly	
• Get	the	packet	to	the	destination	
• Get	responses	to	the	packet	back	to	source	
• Carry	data	
• Tell	host	what	to	do	with	the	packet	once	arrived	
• Specify	any	special	network	handling	of	the	packet	
• Deal	with	problems	that	arise	along	the	path



Reading	Packet	Correctly

• Where	does	the	header	end?	

• Where	the	the	packet	end?	

• What	version	of	IP?	

• Why	is	this	so	important?



Getting	to	the	Destination	

• Provide	destination	address	

• Should	this	be	location	or	identifier	(name)?	

• And	what’s	the	difference?	

• If	a	host	moves	should	its	address	change?	

• If	not,	how	can	you	build	scalable	Internet?	
• If	so,	then	what	good	is	an	address	for	identification?



Getting	Response	Back	to	Source

• Source	address	

• Necessary	for	routers	to	respond	to	source		
• When	would	they	need	to	respond	back?	

• Failures!	
• Do	they	really	need	to	respond	back?	

• How	would	the	source	know	if	the	packet	has	reached	the	
destination?



Carry	Data

• Payload!



Questions?



List	of	Tasks

• Read	packet	correctly	
• Get	the	packet	to	the	destination	
• Get	responses	to	the	packet	back	to	source	
• Carry	data	
• Tell	host	what	to	do	with	packet	once	arrived	
• Specify	any	special	network	handling	of	the	packet	
• Deal	with	problems	that	arise	along	the	path



Telling	Destination	How	to	Process	Packet

• Indicate	which	protocols	should	handle	packet	

• What	layers	should	this	protocol	be	in?	

• What	are	some	options	for	this	today?	

• How	does	the	source	know	what	to	enter	here?



Special	Handling

• Type	of	service,	priority,	etc.	

• Options:	discuss	later



Dealing	With	Problems

• Is	packet	caught	in	loop?	
• TTL	

• Header	corrupted:	
• Detect	with	Checksum	

• What	about	payload	checksum?	

• Packet	too	large?	
• Deal	with	fragmentation	

• Split	packet	apart	
• Keep	track	of	how	to	put	together	



Are	We	Missing	Anything?

• Read	packet	correctly	
• Get	the	packet	to	the	destination	
• Get	responses	to	the	packet	back	to	source	
• Carry	data	
• Tell	host	what	to	do	with	packet	once	arrived	
• Specify	any	special	network	handling	of	the	packet	
• Deal	with	problems	that	arise	along	the	path



From	Semantics	to	Syntax	

• The	past	few	slides	discussed	the	kinds	of	information	the	header	must	

provide	

• Will	now	show	the	syntax	(layout)	of	IPv4	header,	and	discuss	the	

semantics	in	more	detail



IP	Packet	Structure

4-bit Version
4-bit Header 

Length
8-bit Type of 

Service 
(TOS)

16-bit Total Length (Bytes)

16-bit Identification 3-bit Flags 13-bit Fragment Offset

8-bit Time to Live 
(TTL) 8-bit Protocol 16-bit Header Checksum

32-bit Source IP Address

32-bit Destination IP Address

Options (if any)

Payload



20	Bytes	of	Standard	Header,	then	Options

4-bit Version
4-bit Header 

Length
8-bit Type of 

Service 
(TOS)

16-bit Total Length (Bytes)

16-bit Identification 3-bit Flags 13-bit Fragment Offset

8-bit Time to Live 
(TTL) 8-bit Protocol 16-bit Header Checksum

32-bit Source IP Address

32-bit Destination IP Address

Options (if any)

Payload



Next	Set	of	Slides

• Mapping	between	tasks	and	header	fields		

• Each	of	these	fields	is	devoted	to	a	task	

• Let’s	find	out	which	ones	and	why…



Go	Through	Tasks	One-by-One

• Read	packet	correctly	
• Get	the	packet	to	the	destination	
• Get	responses	to	the	packet	back	to	source	
• Carry	data	
• Tell	host	what	to	do	with	packet	once	arrived	
• Specify	any	special	network	handling	of	the	packet	
• Deal	with	problems	that	arise	along	the	path



Read	Packet	Correctly

• Version	number	(4	bits)	

• Indicates	the	version	of	the	IP	protocol	
• Necessary	to	know	what	other	fields	to	expect	
• Typically	“4”	(for	IPv4),	and	sometimes	“6”	(for	IPv6)	

• Header	length	(4	bits)	
• Number	of	32-bit	words	in	the	header	

• Typically	“5”	(for	a	20-byte	IPv4	header)	
• Can	be	more	when	IP	options	are	used	

• Total	length	(16	bits)	
• Number	of	bytes	in	the	packet	

• Maximum	size	is	65,535	bytes	(2^16	-1)	

• …	though	underlying	links	may	impose	smaller	limits



Fields	for	Reading	Packet	Correctly

4-bit Version
4-bit Header 

Length
8-bit Type of 

Service 
(TOS)

16-bit Total Length (Bytes)

16-bit Identification 3-bit Flags 13-bit Fragment Offset

8-bit Time to Live 
(TTL) 8-bit Protocol 16-bit Header Checksum

32-bit Source IP Address

32-bit Destination IP Address

Options (if any)

Payload



Getting	Packet	to	Destination	and	Back

• Two	IP	addresses	
• Source	IP	address	(32	bits)	
• Destination	IP	address	(32	bits)	

• Destination	Address	
• Unique	locator	for	the	receiving	host		
• Allows	each	node	to	make	forwarding	decisions	

• Source	Address	
• Unique	locator	for	the	sending	host	
• Recipient	can	decide	whether	to	accept	packet	
• Enables	recipient	to	send	a	reply	back	to	the	source



Fields	for	Reading	Packet	Correctly

4-bit Version
4-bit Header 

Length
8-bit Type of 

Service 
(TOS)

16-bit Total Length (Bytes)

16-bit Identification 3-bit Flags 13-bit Fragment Offset

8-bit Time to Live 
(TTL) 8-bit Protocol 16-bit Header Checksum

32-bit Source IP Address

32-bit Destination IP Address

Options (if any)

Payload



Questions?



List	of	Tasks

• Read	packet	correctly	
• Get	the	packet	to	the	destination	
• Get	responses	to	the	packet	back	to	source	
• Carry	data	
• Tell	host	what	to	do	with	packet	once	arrived	
• Specify	any	special	network	handling	of	the	packet	
• Deal	with	problems	that	arise	along	the	path



Telling	Host	How	to	Handle	Packet	

• Protocol	(8	bits)	
• Identifies	the	higher	level	protocol	
• Important	for	demultiplexing	at	receiving	host	

• Most	common	examples	

• E.g.,	“6”	for	the	Transmission	Control	Protocol	(TCP)	

• E.g.,	“17”	for	the	User	Datagram	Protocol

IP Header
TCP Header

IP Header
TCP Header

Protocol = 6 Protocol = 17



Fields	for	Reading	Packet	Correctly

4-bit Version
4-bit Header 

Length
8-bit Type of 

Service 
(TOS)

16-bit Total Length (Bytes)

16-bit Identification 3-bit Flags 13-bit Fragment Offset

8-bit Time to Live 
(TTL) 8-bit Protocol 16-bit Header Checksum

32-bit Source IP Address

32-bit Destination IP Address

Options (if any)

Payload



Special	Handling

• Type-of-Service	(8-bits)	
• Allow	packets	to	be	treated	differently	based	on	needs		
• E.g.,	low	delay	for	audio,	high	bandwidth	for	bulk	transfer	
• Has	been	redefined	several	times,	no	general	use	

• Options	
• Ability	to	specify	other	functionality	
• Extensible	format	(later)



Fields	for	Reading	Packet	Correctly

4-bit Version
4-bit Header 

Length
8-bit Type of 

Service 
(TOS)

16-bit Total Length (Bytes)

16-bit Identification 3-bit Flags 13-bit Fragment Offset

8-bit Time to Live 
(TTL) 8-bit Protocol 16-bit Header Checksum

32-bit Source IP Address

32-bit Destination IP Address

Options (if any)

Payload



Option	Field	Layout

Field Size (bits) Description

Copied 1 Set if field copied to all 
fragments

Class 2 0 = control, 2 = debugging/
measurement

Number 5 Specified option

Length 8 Size of entire option

Data Variable Option-specific data



Examples	of	Options

• Record	Route	
• Strict	Source	Route	
• Loose	Source	Route	
• Timestamp	

• Traceroute	
• Router	Alert	
• …



Potential	Problems

• Header	Corrupted:	Checksum	

• Loop:	TTL	

• Packet	too	large:	Fragmentation



Preventing	Loops

• Forwarding	loops	cause	packets	to	cycle	forever	
• As	these	accumulate,	eventually	consume	all	capacity	

• Time-to-live	(TTL)	Field	(8-bits)	

• Decremented	at	each	hop,	packet	discarded	if	reaches	0	

• …	and	“time	exceeded”	message	is	sent	to	the	source	

• Using	“ICMP”	control	message;	basis	for	traceroute



TTL	Field

4-bit Version
4-bit Header 

Length
8-bit Type of 

Service 
(TOS)

16-bit Total Length (Bytes)

16-bit Identification 3-bit Flags 13-bit Fragment Offset

8-bit Time to Live 
(TTL) 8-bit Protocol 16-bit Header Checksum

32-bit Source IP Address

32-bit Destination IP Address

Options (if any)

Payload



Header	Corruption

• Checksum	(16	bits)	

• Particular	form	of	checksum	over	packet	header	

• If	not	correct,	router	discards	packets	
• So	it	doesn’t	act	in	bogus	information	

• Checksum	recalculated	at	every	router	

• Why?	

• Why	include	TTL?	

• Why	only	header?



Checksum	Field

4-bit Version
4-bit Header 

Length
8-bit Type of 

Service 
(TOS)

16-bit Total Length (Bytes)

16-bit Identification 3-bit Flags 13-bit Fragment Offset

8-bit Time to Live 
(TTL) 8-bit Protocol 16-bit Header Checksum

32-bit Source IP Address

32-bit Destination IP Address

Options (if any)

Payload



Addressing



Addressing	so	far

• Each	node	has	a	“name”	

• We	have	so	far	worked	only	with	names	

• Assumed	that	forwarding/routing	etc.	done	on	names	

• Today:		
• Why	do	we	need	addresses?	

• Why	do	we	assign	addresses	the	way	we	assign	addresses?	

• And	why	thats	the	wrong	way!



Current	Addressing

• Reflects	series	of	necessary	hacks	
• Necessary	to	survive,	but	not	pretty	

• No	one	would	design	such	a	system	from	scratch	

• Let	me	walk	you	through	the	same	that	is	today’s	addressing



Why	addresses?

• Used	by	routers	to	forward	packets	to	destination	
• A	“Locator”,	so	to	say	…	

• Sometimes	also	used	as	identifiers	

• Must	let	destination	know	packet	was	for	them	

• Destinations	know	what	their	address	is	

• Typically,	addresses	are	mostly	locators	

• Contains	information	about	how	to	reach	the	destination	host



Two	requirements	for	addressing

• Scalable	routing	
• How	much	state	must	be	exchanged	to	create	paths?	

• How	must	state	must	be	stored	to	forward	packets?	

• How	much	state	needs	to	be	updated	upon	host	arrival/departure?	

• Efficient	forwarding	
• How	quickly	can	one	locate	items	in	routing	table?	

• Some	addressing	schemes	make	this	easier	than	others	

• Host	must	be	able	to	recognize	packet	is	for	them



Recognizing	packets	are	for	the	destination

• Address	can	contain	something	intrinsic	to	the	destination	

• I	know	my	current	address	

• Can	recognize	that	incoming	packet	is	using	that	address	

• Different	layers	handle	this	differently	
• L2	addresses	are	intrinsic	
• L3	addresses	are	assigned	(and	ephemeral)



Layer	2:	“Flat”	Addressing

• Typically	uses	MAC	address	

• “Names”,	remember?	Used	as	identifier	

• Unique	identifiers	hardcoded	in	the	hardware	
• No	location	information	

• Local	area	networks	route	on	these	“flat”	addresses	
• Each	switch	stores	a	separate	routing	entry	for	each	host	

• Works	nicely	with	Spanning	Tree	Protocol	

• Routes	set	up	“on	demand”



How	does	this	meet	our	requirements?

• Scalable	routing	
• Can	scale	to	size	of	L2	networks	

• Efficient	forwarding	
• Exact	match	lookup	on	MAC	addresses	

• Only	need	table	for	“active”	hosts	

• Host	must	be	able	to	recognize	the	packet	is	for	them	

• MAC	address	does	this	perfectly	

• Conclusion:	scaling	limited	by	table	size	(#hosts)



How	would	you	scale	L2

• Suppose	we	want	to	design	a	much	larger	L2	network	

• Must	use	MAC	address	as	part	of	the	address	

• Only	way	host	knows	that	the	packet	is	for	them	

• But	how	do	you	avoid	having	separate	routing	entry	for	each	host?



How	would	you	scale	L2

• Lets	try	to	design	an	addressing	scheme	to	achieve	our	requirements:	

• Scalable	routing	on	large	networks	
• Small	routing	tables	(less	than	#hosts)	

• Small	number	of	updates	upon	each	host	arrival/departure	

• Efficient	forwarding	
• Fast	to	look	up	from	the	table	

• Destination	must	be	able	to	identify	the	packet	is	for	it



Solution

• Addresses	are	of	form	—	Switch:Host	

• All	internal	forwarding	done	on	switch	addresses	
• Fewer	in	number	(than	hosts)	

• Very	stable	

• Mapping	between	hosts	and	switches	

• A	mechanism	we’ll	study	soon	…	

• Information	only	kept	at	the	end-hosts	

• Hosts	know	that	packet	is	for	them		

• Using	MAC	addresses	

• Don’t	need	to	know	which	switch	they	are	at



How	do	we	extend	this	to	the	entire	Internet?

• Routing	tables	cannot	have	entry	for	each	switch	in	the	Internet	

• Cannot	flood	when	you	don’t	know	where	someone	is



One	solution

• Use	addresses	of	the	form	—	Network:Host	

• Routers	know	how	to	reach	all	networks	in	the	world	
• Routers	ignore	host	part	of	the	address	
• Hosts	can	recognize	when	packets	are	from	them	(host)	

• Each	network	knows	how	to	reach	local	hosts	
• E.g.,	using	L2	

• A	lookup	mechanism	allows	hosts	to	know	where	every	host	is	

• That	is,	which	network	to	send	to	

• This	was	the	original	IP	addressing	scheme



What	do	I	mean	by	“network”

• In	the	original	IP	addressing	scheme	…	

• Network	meant	an	L2	network	

• Often	referred	to	as	a	“subnet”	
• There	are	too	many	of	them	now	to	scale



Two	key	aspects	of	the	solution

• Aggregation	

• Mapping	between	identifier	and	locator



Aggregation

• Aggregation:	single	forwarding	entry	used	for	many	individual	hosts	

• Example:		

• In	our	scalable	L2	solution:	aggregate	was	switch	
• L3:	aggregate	was	network	

• Advantages:	
• Fewer	entries	and	more	stable	

• Change	of	hosts	do	not	change	tables	
• Don’t	need	to	keep	state	on	individual	hosts



Name/Identifier	to	Location	Mapping

• Uses	Domain	Name	System	

• Remember?	

• We	are	going	to	discuss	this	in	a	few	lectures	….	

• Use	“name”	as	an	identifier	

• Returns	the	IP	address	as	a	locator



Where	are	we?

• Have	a	sensible	addressing	scheme	for	scaling	L2	

• Use	MAC	addresses	for	host	addressing	

• But	forward	based	on	destination	switch	addresses	

• We	have	a	sensible	addressing	scheme	for	L3	

• Use	Network:Host	addressing	
• Routers	forward	on	network	fields



How	do	these	fit	together?

• When	sending	a	packet	from	A	to	B	…	

• A	sends	over	L2	network	to	“edge”	router	
• Using	MAC	address	of	router	and	L2	forwarding	

• Series	of	routers	carry	packets	to	B’s	L2	network	
• Looking	at	network	portion	of	IP	address	

• B’s	L2	network	delivers	packets	to	B	
• Using	B’s	MAC	address	and	L2	forwarding	

• But,	but,	but	….	
• How	do	you	find	out	what	B’s	MAC	address	is?	

• ARP	(discussed	later)



Hierarchical	Structure

• The	Internet	is	an	“inter-network”	
• Used	to	connect	networks	together,	not	hosts	

• Forms	a	natural	two-way	hierarchy	

• Wide	area	network	(WAN)	delivers	to	the	right	LAN	

• LAN	delivers	to	the	right	host



Hierarchical	Addressing

• Can	you	think	of	an	example?	

• Addressing	in	the	US	mail	

• Country	
• City,	Zip	code	
• Street	
• House	Number	

• Occupant	“Name”



Quick	review

• Original	IP	addressing	—	Network:Host	

• Elegant,	but	perhaps	not	sufficiently	scalable	

• How	would	you	make	it	more	scalable?



Extending	the	L3	solution

• If	too	many	networks,	then	could	add	another	layer	

• ISP:Network:Host	

• Network	might	be	one	of	the	many	L2	networks	within	an	ISP	

• Can	add	additional	levels	of	hierarchy	(e.g.,	region)	

• And	can	do	flat	routing	at	each	level	
• Address	can	be	both	locator	(prefix)	and	identifier	(suffix)	

• Simple,	elegant,	easy	to	implement,	as	scalable	as	one	wants…	

• But	that’s	not	what	happened	:(



IP	addresses

• Unique	32	bit	numbers	associated	with	an	“interface”	(link)	

• Use	dotted-quad	notation,	e.g.,	12.34.128.5



Original	Internet	Addresses

• First	eight	bits:	network	address	(/8)	
• Slash	notation	indicates	network	address	

• Last	24	bits:	host	address	

• Assumed	256	networks	were	more	than	enough!!!	

• Now	we	have	millions!



Suppose	we	want	to	accommodate	more	networks	

• We	can	allocate	more	bits	to	network	address	

• Problem?	

• Fewer	bits	for	host	names	

• What	if	some	networks	need	more	hosts?



Today’s	Addressing:	CIDR

• Classless	Inter-domain	Routing	

• Flexible	division	between	network	and	host	addresses	
• Must	specify	both	address	and	mask	

• Clarifies	the	boundary	between	network	and	host	
• Mask	carried	in	routing	algorithms	

• Not	implicitly	carried	in	address


