
Computer	Networks:	
Architecture	and	Protocols

CS4450

Lecture	12	
Distance	Vector	Rou2ng

Spring	2018	
Rachit	Agarwal



Announcements

• Problem	Set	3	will	be	up	soon	(definitely	by	Saturday)	

• During	my	first	lecture,	I	promised	you:	

• I	care	about	you(r	learning)!	
• If	you	stick	to	the	contract,	I’ll	bring	my	A	game	in	every	lecture!	

• You	have	been	great	so	far!	

• I	will	stick	to	my	promise	

• We	are	almost	half-way	through	

• If	you	think	I	am	not	bringing	my	A-game	in	the	course	

• I	want	to	know	and	improve!!!	

• Please	fill	out	the	mid-term	evaluation	(this	weekend)	

• Completely	anonymized;	only	for	my	eyes;	max	5	min

2



Goals	for	Today’s	Lecture

• Distance	Vector	(Local	view)	

• Maintain	sanity:	its	one	of	the	“harder”	lectures	

• I’ll	try	to	make	it	-less-	hard,	but	…	

• Pay	attention	
• Review	again	tomorrow	

• Work	out	a	few	examples

3



• Create	Tree,	route	on	tree	
• E.g.,	Spanning	tree	protocol	(switched	Ethernet)	
• Good:	easy,	no	(persistent)	loops,	no	dead	ends	
• Not-so-good:	unnecessary	processing,	high	latency,	low	bandwidth	

• Obtain	a	global	view:	
• E.g.,	Link	state	(last	lecture)	

• Distributed	route	computation:	

• E.g.,	Distance	vector	
• E.g.,	Border	Gateway	Protocol	

• Today:	Distributed	route	computation

Recap:	Four	flavors	of	protocols



Recap:	Spanning	Tree	Protocol

5

• Messages	(Y,d,X):	For	root	Y;	From	node	X;	advertising	a	distance	d	to	Y	

• Initially	each	switch	X	announces	(X,0,X)	to	its	neighbors	

• Switches	update	their	view	
• Upon	receiving	message	(Y,d,Y)	from	Z,	check	Y’s	id	

• If	Y’s	id	<	current	root:	set	root	=	Y	

• Switches	compute	their	distance	from	the	root	

• Add	1	to	the	shortest	distance	received	from	a	neighbor	

• If	root	changed	OR	shortest	distance	to	the	root	changed,	send	all	
neighbors	updated	message	(Y,d+1,X)



Distributed	Route	Computation



• Each	node	computing	the	outgoing	links	based	on:	

• Local	link	costs	
• Information	advertised	by	neighbors	

• Algorithms	differ	in	what	these	exchanges	contain	

• Distance-vector:	just	the	distance	(and	next	hop)	to	each	destination	
• Path	vector:	the	entire	path	to	each	destination	

• We	will	focus	on	distance-vector	for	now

Distributed	Computation	of	Routes



Recall:	Routing	Tables	=	Collection	of	Spanning	Trees

8

• Can	we	use	the	spanning	tree	protocol	(with	modifications)?	

• Messages	(Y,d,X):	For	root	Y;	From	node	X;	advertising	a	distance	d	to	Y	

• Initially	each	switch	X	announces	(X,0,X)	to	its	neighbors



Towards	Distance	Vector	Protocol	(with	no	failures)

9

• Messages	(Y,d,X):	For	root	Y;	From	node	X;	advertising	a	distance	d	to	Y	

• Initially	each	switch	X	announces	(X,0,X)	to	its	neighbors	

• Switches	update	their	view	
• Upon	receiving	message	(Y,d,Z)	from	Z,	check	Y’s	id	

• If	Y’s	id	<	current	root:	set	root	destination	=	Y	

• Switches	compute	their	shortest	distance	from	the	root	destination	

• If	current_distance_to_Y	>	d	+	cost	of	link	to	X:		
• update	current_distance_to_Y	=	d	

• If	root	changed	OR	shortest	distance	to	the	root	destination	changed,	
send	all	neighbors	updated	message	(Y,d+c,X)



Group	Exercise:		

Lets	run	the	Protocol	on	this	example

2

1

3

2 1

7



Round	1

Receive Send

1 (1,	0,	1)

2 (2,	0,	2)

3 (3,	0,	3)

2

1

3

2 1

7



Round	2

Receive Send

1		
(1,	0,	1)

(2,	0,	2),		
(3,	0,	3)

(2,	2,	1),	
(3,	1,	1)

2	
(2,	0,	2)

(1,	0,	1),	
(3,	0,	3)

(1,	2,	2),	
(3,	7,	2)

3	
(3,	0,	3)

(1,	0,	1),	
(2,	0,	2)

(1,	1,	3),	
(2,	7,	3)

2

1

3

2 1

7



Round	3

Receive Send

1		
(1,	0,	1)	
(2,	2,	1),	
(3,	1,	1)	

(1,	2,	2),	
(3,	7,	2),		
(1,	1,	3),	
(2,	7,	3)

2	
(1,	2,	2),	
(2,	0,	2),	
(3,	7,	2)

(2,	2,	1),	
(3,	1,	1),	
(1,	1,	3),	
(2,	7,	3)

(3,	3,	2)

3	
(1,	1,	3),	
(2,	7,	3),	
(3,	0,	3)

(2,	2,	1),	
(3,	1,	1),	
(1,	2,	2),	
(3,	7,	2)

(2,	3,	3)

2

1

3

2 1

7



Round	4

Receive Send

1		
(1,	0,	1)	
(2,	2,	1),	
(3,	1,	1)	

(3,	3,	2),	
(2,	3,	3)

2	
(1,	2,	2),	
(2,	0,	2),	
(3,	3,	2)

(2,	3,	3)

3	
(1,	1,	3),	
(2,	3,	3),	
(3,	0,	3)

(3,	3,	2)

2

1

3

2 1

7



Towards	Distance-vector	protocol	with	next-hops	(no	failures)

15

• Messages	(Y,d,X):	For	root	Y;	From	node	X;	advertising	a	distance	d	to	Y	

• Initially	each	switch	X	announces	(X,0,X)	to	its	neighbors	

• Switches	update	their	view	
• Upon	receiving	message	(Y,d,Z)	from	Z,	check	Y’s	id	

• If	Y’s	id	<	current	root:	set	root	destination	=	Y	

• Switches	compute	their	shortest	distance	from	the	root	destination	

• If	current_distance_to_Y	>	d	+	cost	of	link	to	X:		
• update	current_distance_to_Y	=	d	
• update	next_hop_to_destination	=	X	

• If	root	changed	OR	shortest	distance	to	the	root	destination	changed,	
send	all	neighbors	updated	message	(Y,d+c,X)



Group	Exercise:		

Lets	run	the	Protocol	on	this	example	

(this	time	with	next-hops)

2

1

3

2 1

7



Round	1

Receive Send Next-hops

1 (1,	0,	1) [-]

2 (2,	0,	2) [-]

3 (3,	0,	3) [-]

2

1

3

2 1

7



Round	2

Receive Send Next-hops

1		
(1,	0,	1)

(2,	0,	2),		
(3,	0,	3)

(2,	2,	1),	
(3,	1,	1)

[-,	
2,	
3]

2	
(2,	0,	2)

(1,	0,	1),	
(3,	0,	3)

(1,	2,	2),	
(3,	7,	2)

[1,	
-,	
3]

3	
(3,	0,	3)

(1,	0,	1),	
(2,	0,	2)

(1,	1,	3),	
(2,	7,	3)

[1,	
2,	
-]

2

1

3

2 1

7



Round	3

Receive Send Next-hops

1		
(1,	0,	1)	
(2,	2,	1),	
(3,	1,	1)	

(1,	2,	2),	
(3,	7,	2),		
(1,	1,	3),	
(2,	7,	3)

[-,	
2,	
3]

2	
(1,	2,	2),	
(2,	0,	2),	
(3,	7,	2)

(2,	2,	1),	
(3,	1,	1),	
(1,	1,	3),	
(2,	7,	3)

(3,	3,	2)
[1,	
-,	
1]

3	
(1,	1,	3),	
(2,	7,	3),	
(3,	0,	3)

(2,	2,	1),	
(3,	1,	1),	
(1,	2,	2),	
(3,	7,	2)

(2,	3,	3)
[1,	
1,	
-]

2

1

3

2 1

7



Round	4

Receive Send Next-hops

1		
(1,	0,	1)	
(2,	2,	1),	
(3,	1,	1)	

(3,	3,	2),	
(2,	3,	3)

[-,	
2,	
3]

2	
(1,	2,	2),	
(2,	0,	2),	
(3,	3,	2)

(2,	3,	3)
[1,	
-,	
1]

3	
(1,	1,	3),	
(2,	3,	3),	
(3,	0,	3)

(3,	3,	2)
[1,	
1,	
-]

2

1

3

2 1

7



• The	same	algorithm	applies	to	all	destinations		

• Each	node	announces	distance	to	each	dest	
• I	am	distance	d_A	away	from	node	A	

• I	am	distance	d_B	away	from	node	B	

• I	am	distance	d_C	away	from	node	C	

• …	

• Nodes	are	exchanging	a	vector	of	distances

Why	not	Spanning	Tree	Protocol?	Why	Distance	“Vector”?



Distance	Vector	Protocol

22

• Messages	(Y,d,X):	For	root	Y;	From	node	X;	advertising	a	distance	d	to	Y	

• Initially	each	switch	X	initializes	its	routing	table	to	(X,0,-)	and	distance	
infinity	to	all	other	destinations	

• Switches	announce	their	entire	distance	vectors	(routing	table	w/0	next	hops)	

• Upon	receiving	a	routing	table	from	a	node	(say	X),	each	node	does:	

• For	each	destination	Y	in	the	announcement	(distance(X,	Y)	=	d):	

• If	current_distance_to_Y	>	d	+	cost	of	link	to	X:		
• update	current_distance_to_Y	=	d	
• update	next_hop_to_destination	=	X	

• If	shortest	distance	to	any	destination	changed,	send	all	neighbors	your	
distance	vectors



• Protocol:	
• Exchanging	that	routing	information	with	neighbors	

• What	and	when	for	exchanges	

• RIP	is	a	protocol	that	implements	DV	(IETF	RFC	2080)	

• Algorithm:	

• How	to	use	the	information	from	your	neighbors	to	update	your	

own	routing	tables?

Two	Aspects	to	This	Approach



Group	Exercise:		

Lets	run	the	Protocol	again	on	this	example	

(this	time	with	distance	vectors)

2

1

3

2 1

7



Round	1

2

1

3

2 1

7

distance next-hop
1 0 -
2 infinity
3 infinity

distance next-hop
1 infinity
2 0 -
3 infinity

distance next-hop
1 infinity
2 infinity
3 0 -



Round	2

2

1

3

2 1

7

distance next-hop
1 0 -
2 2 2
3 1 3

distance next-hop
1 2 1
2 0 -
3 7 3

distance next-hop
1 1 1
2 7 2
3 0 -



Round	3

2

1

3

2 1

7

distance next-hop
1 0 -
2 2 2
3 1 3

distance next-hop
1 2 1
2 0 -
3 3 1

distance next-hop
1 1 1
2 3 1
3 0 -



Round	4

2

1

3

2 1

7

distance next-hop
1 0 -
2 2 2
3 1 3

distance next-hop
1 2 1
2 0 -
3 3 1

distance next-hop
1 1 1
2 3 1
3 0 -



• Algorithm:	

• Nodes	use	Bellman-Ford	to	compute	distances	

• Protocol	
• Nodes	exchange	distance	vectors	
• Update	their	own	routing	tables	
• And	exchange	again…	
• Details:	when	to	exchange,	what	to	exchange,	etc….

From	Algorithm	to	Protocol



• The	three	node	network:	
• Everyone	was	neighbors	with	everyone	else	

• What	happens	in	a	larger	network?	

• Lets	see	….

A	More	Complicated	Case



Group	Exercise:		

Lets	run	the	Protocol	on	this	example	

(this	time	with	next-hops)

x

y

v

1 1

2

z3



Round	1

distance NH
x infinity
y 0 -
z infinity
v infinity

x

y

v

1 1

2

z3

distance NH
x 0 -
y infinity
z infinity
v infinity

distance NH
x infinity
y infinity
z infinity
v 0 -

distance NH
x infinity
y infinity
z 0 -
v infinity



Round	2

distance NH
x 1 x
y 0 -
z 3 z
v infinity

x

y

v

1 1

2

z3

distance NH
x 0 -
y 1 y
z infinity
v 2 v

distance NH
x 2 x
y infinity
z 1 z
v 0 -

distance NH
x infinity
y 3 y
z 0 -
v 1 v



Round	3

distance NH
x 1 x
y 0 -
z 3 z
v 3 x

x

y

v

1 1

2

z3

distance NH
x 0 -
y 1 y
z 3 v
v 2 v

distance NH
x 2 x
y 3 x
z 1 z
v 0 -

distance NH
x 3 v
y 3 y
z 0 -
v 1 v



• When	do	you	send	messages?	

• When	any	of	your	distances	d(u,v)	change	

• What	about	when	c(u,v)	changes?	

• Periodically,	to	ensure	consistency	between	neighbors	

• What	information	do	you	send?	

• Could	send	entire	vector	
• Or	just	updated	entries	

• Do	you	send	everyone	the	same	information	

• Consider	the	following	slides

Other	Aspects	of	Protocol



Three	node	network

2

1

3

2 1

7

distance next-hop
1 0 -
2 2 2
3 1 3

distance next-hop
1 1 1
2 3 1
3 0 -



Three	node	network

2

1

3

2 1

7

distance next-hop
1 0 -
2 infinity
3 1 3

distance next-hop
1 1 1
2 3 1
3 0 -



Round	1

2

1

3

2 1

7

distance next-hop
1 0 -
2 4 3
3 1 3

distance next-hop
1 1 1
2 3 1
3 0 -



Round	2

2

1

3

2 1

7

distance next-hop
1 0 -
2 4 3
3 1 3

distance next-hop
1 1 1
2 5 1
3 0 -



Round	3

2

1

3

2 1

7

distance next-hop
1 0 -
2 6 3
3 1 3

distance next-hop
1 1 1
2 5 1
3 0 -



Round	4

2

1

3

2 1

7

distance next-hop
1 0 -
2 6 3
3 1 3

distance next-hop
1 1 1
2 7 1
3 0 -

COUNT-TO-INFINITY	
problem!!!!



Count-to-infinity	problem

2

1

3

2 1

7

distance next-hop
1 0 -
2 6 3
3 1 3

distance next-hop
1 1 1
2 7 1
3 0 -

Not	just	due	to	failures:	
Can	happen	with	changes	in	cost!



• Do	not	advertise	a	path	back	to	the	node	that	is	the	next	hop	on	the	path	
• Called	“split	horizon”	
• Telling	them	about	your	entry	going	through	them	

• Doesn’t	tell	them	anything	new	

• Perhaps	misleads	them	that	you	have	an	independent	path	

• Another	solution:	if	you	are	using	a	next-hop’s	path,	then:	
• Tell	them	not	to	use	your	path	(by	telling	them	cost	of	infinity)	

• Called	“poisoned	reverse”

How	Can	You	Fix	This?



• Distance	vector	protocols	can	converge	slowly	
• While	these	corner	cases	are	rare	

• The	resulting	convergence	delays	can	be	significant

Convergence



• Link-State:	
• Global	flood:	each	router’s	link-state	(#ports)	
• Send	it	once	per	link	event,	or	periodically	

• Distance	Vector:	
• Send	longer	vector	(#dest)	just	to	neighbors	

• But	might	end	up	triggering	their	updates	

• Send	it	every	time	DV	changes	(which	can	be	often)	

• Tradeoff:	
• LS:	Send	it	everywhere	and	be	done	in	predictable	time	

• DV:	Send	locally,	and	perhaps	iterate	until	convergence

Comparison	of	Scalability



End	of	Distance-vector	Routing	

Now	you	know	just	as	much	as	my	PhD	students	:-)


