CS4450

Computer Networks:
Architecture and Protocols

Lecture 10
Spanning Tree Protocol
Fundamentals of Routing

Spring 2018
Rachit Agarwal

My Tuesday evening and Wednesday

* Wallowing in the shame of failure
* | left you confused at the end of last lecture ...

* | felt like I have failed, yet again, as a teacher ...

* | felt like my class must hate me, yet again ...

* Today’s goals:
* Redeem my esteem, or at least, try it ...

* See if my students can love me (again?)

My Tuesday evening and Wednesday

* First attempt
* | (almost) emptied my queues :-)
* Answered all the emails
* Updated the website (socket slides/code, PS2, ...)
* Things should (hopefully) be good until the spring break!

* Problem Set 2 solutions released on Piazza

* Quiz solutions will be released by this weekend

Goals for Today’s Lecture

* Bring us back into our love for computer networks (and me?) ...
* Quick Review: Spanning Tree Protocol (+Failures)

* Why do we need routing layer?
 Why not just use spanning tree protocol?

e Start on Fundamentals of Routing

Recap: Spanning Tree Protocol (failures on later slides)

* Messages (Y,d,X): For root Y; From node X; advertising a distanced to Y
* Initially each switch X announces (X,0,X) to its neighbors

e Switches update their view
e Upon receiving message (Y,d,Y) from Z, check Y’s id

e If Y'sid < current root: set root=Y

* Switches compute their distance from the root

* Add 1 to the shortest distance received from a neighbor

* If root changed OR shortest distance to the root changed, send all
neighbors updated message (Y,d+1,X)

Group Exercise:

Lets run the Spanning Tree Protocol on this example

Round 1

Receive

Receive

Receive

Receive

After Round 5: We have our Spanning Tree

¢ 3-1
* 5-1
* 6-1
* 2-3
* 4-2
¢ /-2

12

Questions?

Spanning Tree Protocol ++ (incorporating failures)

 Protocol must react to failures
e Failure of the root node

e Failure of switches and links

* Root node sends periodic announcement messages
* Few possible implementations, but this is simple to understand
e Other switches continue forwarding messages

e Detecting failures through timeout (soft state)

* |f no word from root, time out and send a (Y, 0, Y) message to all
neighbors (in the graph)!

* If multiple messages with a new root received, send message (Y, d, X)
to the neighbor sending the message

14

Suppose link 2-4 fails

e 4 will send (4, 0, 4) to all its neighbors

* 4 will stop receiving announcement messages from the root
* Why?

e At some point, 7 will respond with (1, 3, 7)
* 4 will now update to (1, 4, 4) and send update message

 New spanning tree!
1

" \
AN

15

Questions?

The end of Link Layer

And the beginning of network layer :-D

- Built on top of
reliable delivery

Built on top of Transport —

best-effort routmg
m —pp Built on top of best-

effort forwarding
Built on top of <=

Data Link ————
physical bit transfer
S—p Physical

Application

17

Why do we need a network layer?

* There’s only one path from source to destination
* How do you find that path? Ideas?

* Easy to design routing algorithms for trees

* Nodes can “flood” packet to all other nodes

Flooding on a Spanning Tree

* Sends packet to every node in the

network

* Step 1: Ignore the links not belonging
to the Spanning Tree

e Step 2: Originating node sends “flood”
packet out every link (on spanning
tree)

* Step 3: Send incoming packet out to
all links other than the one that sent
the packet

Flooding Example

Source

Destination

Flooding Example

Eventually all nodes are covered
1

\ :
Source

47 P
Destination '

One copy of packet delivered to destination

Routing via Flooding on Spanning Tree ...

* There’s only one path from source to destination
* How do you find that path? Ideas?

* Easy to design routing algorithms for trees

* Nodes can “flood” packet to all other nodes

* Amazing properties:
* No routing tables needed!
* No packets will ever loop.
* At least (and exactly) one packet must reach the destination

* Assuming no failures

Three fundamental issues!

Source

Destination

Issue 1: Each host has to do unnecessary packet processing!
(to decide whether the packet is destined to the host)

Three fundamental issues!

Source

Destination

Issue 2: Higher latency!
(The packets unnecessarily traverse much longer paths)

Three fundamental issues!

Source

Destination

Issue 2: Lower bandwidth availability!
(2-6 and 3-1 packets unnecessarily have to share bandwidth)

Questions?

Why do we need a network layer?

* Network layer performs “routing” of packets to alleviate these issues
e Uses routing tables

* Lets understand routing tables first
* We will see routing tables are nothing but ...
* Guess?
* A collection of (carefully constructed) spanning trees
* One per destination

Routing Packets via Routing Tables

* Routing tables allow finding path from source to destination

Switch #| -

s,

- T~

Harvard

Switch #3

—
- T

Cornell

=~ _y~
- T~

Switch #2 -

MIT

What path will a packet take from Cornell to MIT?

Routing Packets via Routing Tables

* Finding path for a packet from source to destination

Switch #| -

*’

- T~

Harvard

— 7

Cornell

Switch #3

—
l~

N\

How to specify whether the packet
should take or Path 2? MIT

,
"-s /

Switch #2

Routing Table

* Suppose packet follows : Cornell - S#1 - S#3 - MIT
|
CORNELL L1 -
MIT L3 Switch #1 L4
HARVARD L4
e =
Harvard
- Switch #3
CORNELL
e =< MIT L6
CO rne | | HARVARD L3
—
7 — L5 L6

CORNELL L2 Switch #2
MIT L5
HARVARD L5

Each Switch stores a table indicating the next hop for
corresponding destination of a packet (called a routing table)

MIT

“Valid Routing Tables” (routing state)

* Global routing state is valid if:

* it always results in deliver packets to their destinations

* Goal of Routing Protocols
 Compute a valid state
* But how to tell if a routing state is valid?...
* Think about it, what could make routing incorrect?

Validity of a Routing State

* Global routing state valid if and only if:

* There are no dead ends (other than destination)

* There are no loops

* A dead end is when there is no outgoing link
e A packet arrives, but ..
e the routing table does not have an outgoing link

e And that node is not the destination

* Aloop is when a packet cycles around the same set of nodes forever

Example: Routing with Dead Ends

* Suppose packet wants to go from Cornell to MIT using given state:

|
CORNELL L1 -
MIT L2 Switch #I L4
HARVARD L4
s
Harvard
- 2 BN Switch #3
CORNELL L5
s = MIT L6
HARVARD L3

Cornell

= v
- T~

L5 L6

NEXT HOP -
Ccomew i S
_— Packet never reaches MIT

MIT

No forwarding decision for MIT!

Example: Routing with Loops

* Suppose packet wants to go from Cornell to MIT using given state:

|
CORNELL L1 -
MIT L3
HARVARD L4

arvard

- DESTINATION NEXT HOP
CORNELL L5
MIT L5
Cornell HARVARD L3
DESTINATION NEXT HO? -
CORNELL L2
MIT L2 '
HARVARD L5 Loop =

Packet never reaches MIT MIT

Two Questions

* How can we verify given routing state is valid?

* How can we produce valid routing state?

Checking Validity of a Routing State

* Check validity of routing state for one destination at a time...

* For each node:
* Mark the outgoing link with arrow for the required destination

* There can only be one at each node
* Eliminate all links with no arrows

* Look what’s left. State is valid if and only if
* Remaining graph is a spanning tree with destination as sink
 Why is this true?
* Tree -> No loops

* Spanning (tree) -> No dead ends

Example 1

Example 1: Pick Destination

Example 1:Put Arrows on Outgoing Ports

)

Example 1:Remove unused Links

.

~

~.

Leaves Spanning Tree: Valid

Example 2:

~

Is this valid?

Example 3:

A
R

~

Is this valid?

Checking Validity of a Routing State

e Simple to check validity of routing state for a particular destination
* Dead ends: nodes without arrows

* Loops: obvious, disconnected from destination and rest of the graph

Two Questions

* How can we produce valid routing state?

Creating Valid Routing State

* Easy to avoid dead ends
* Avoiding loops is hard
* The key difference between routing protocols is how they avoid loops!

* Try to think a loop avoidance design for five minutes

#1: Create Tree Out of Topology

* Remove enough links to create a tree containing all nodes
* Sounds familiar? Spanning trees!

* If the topology has no loops, then just make sure not sending packets
back from where they came
* That causes an immediate loop

* Therefore, if no loops in topology and no formation of immediate loops
ensures valid routing

* However... three challenges
* Unnecessary host resources used to process packets
* High latency

* Low bandwidth (utilization)

#2: Obtain a Global View

* A global view of the network makes computing paths without loops easy
* Many graph algorithms for computing loop-free paths

* For e.g., Dijkstra’s Algorithm

e Getting the global view of network is challenging!

#3: Distributed Route Computation

e Often getting a global view of the network is infeasible

* Distributed algorithms to compute feasible route
* Approach A: Finding optimal route for maximizing/minimizing a metric

* Approach B: Finding feasible route via exchanging paths among switches

Welcome to the Network Layer!

* THE functionality: delivering the data

 THE protocol: Internet Protocol (IP)

* To achieve its functionality (delivering the data), IP protocol has
three responsibilities

e Addressing (next lecture)
* Encapsulating data into packets (actually datagrams; next lecture)
* Routing (using a variety of protocols; several lectures)

Next lecture!

