
Computer	Networks:	
Architecture	and	Protocols

CS4450

Lecture	10	

Spanning	Tree	Protocol	

Fundamentals	of	Rou:ng

Spring	2018	

Rachit	Agarwal



My	Tuesday	evening	and	Wednesday	….

• Wallowing	in	the	shame	of	failure		

• I	left	you	confused	at	the	end	of	last	lecture	…	
• I	felt	like	I	have	failed,	yet	again,	as	a	teacher	…	
• I	felt	like	my	class	must	hate	me,	yet	again	…	

• Today’s	goals:	
• Redeem	my	esteem,	or	at	least,	try	it	…	

• See	if	my	students	can	love	me	(again?)

2



• First	attempt		

• I	(almost)	emptied	my	queues	:-)	

• Answered	all	the	emails	

• Updated	the	website	(socket	slides/code,	PS2,	…)	
• Things	should	(hopefully)	be	good	until	the	spring	break!	

• Problem	Set	2	solutions	released	on	Piazza	

• Quiz	solutions	will	be	released	by	this	weekend

3

My	Tuesday	evening	and	Wednesday	….



Goals	for	Today’s	Lecture

• Bring	us	back	into	our	love	for	computer	networks	(and	me?)	…	

• Quick	Review:	Spanning	Tree	Protocol	(+Failures)	

• Why	do	we	need	routing	layer?		

• Why	not	just	use	spanning	tree	protocol?	

• Start	on	Fundamentals	of	Routing

4



Recap:		Spanning	Tree	Protocol	(failures	on	later	slides)

5

• Messages	(Y,d,X):	For	root	Y;	From	node	X;	advertising	a	distance	d	to	Y	

• Initially	each	switch	X	announces	(X,0,X)	to	its	neighbors	

• Switches	update	their	view	
• Upon	receiving	message	(Y,d,Y)	from	Z,	check	Y’s	id	

• If	Y’s	id	<	current	root:	set	root	=	Y	

• Switches	compute	their	distance	from	the	root	

• Add	1	to	the	shortest	distance	received	from	a	neighbor	

• If	root	changed	OR	shortest	distance	to	the	root	changed,	send	all	
neighbors	updated	message	(Y,d+1,X)



Group	Exercise:		

Lets	run	the	Spanning	Tree	Protocol	on	this	example



Round	1

Receive Send

1 (1,	0,	1)

2 (2,	0,	2)

3 (3,	0,	3)

4 (4,	0,	4)

5 (5,	0,	5)

6 (6,	0,	6)

7 (7,	0,	7)



Round	2
Receive Send

1	(1,	0,	1)
(3,	0,	3),	(5,	0,	5),	

(6,	0,	6)

2	(2,	0,	2)
(3,	0,	3),	(4,	0,	4),	
(6,	0,	6),	(7,	0,	7)

3	(3,	0,	3) (1,	0,	1),	(2,	0,	2) (1,	1,	3)

4	(4,	0,	4) (2,	0,	2),	(7,	0,	7) (2,	1,	4)

5	(5,	0,	5) (1,	0,	1),	(6,	0,	6) (1,	1,	5)

6	(6,	0,	6)
(1,	0,	1),	(2,	0,	2),	

(5,	0,	5)
(1,	1,	6)

7	(7,	0,	7) (2,	0,	2),	(4,	0,	4) (2,	1,	7)



Round	3
Receive Send

1	(1,	0,	1)
(1,	1,	3),	(1,	1,	5),	

(1,	1,	6)

2	(2,	0,	2)
(1,	1,	3),	(2,	1,	4),	
(1,	1,	6),	(2,	1,	7)

(1,	2,	2)

3	(1,	1,	3)

4	(2,	1,	4) (2,	1,	7)

5	(1,	1,	5) (1,	1,	6)

6	(1,	1,	6) (1,	1,	5)

7	(2,	1,	7) (2,1,	4)



Round	4
Receive Send

1	(1,	0,	1)

2	(1,	2,	2)

3	(1,	1,	3) (1,	2,	2)

4	(2,	1,	4) (1,	2,	2) (1,	3,	4)

5	(1,	1,	5)

6	(1,	1,	6) (1,	2,	2)

7	(2,	1,	7) (1,	2,	2) (1,	3,	7)



Round	5
Receive Send

1	(1,	0,	1)

2	(1,	2,	2) (1,	3,	4),	(1,	3,	7)

3	(1,	1,	3)

4	(1,	3,	4) (1,	3,	7)

5	(1,	1,	5)

6	(1,	1,	6)

7	(1,	3,	7) (1,	3,	4)



After	Round	5:	We	have	our	Spanning	Tree

• 3-1	
• 5-1	
• 6-1	
• 2-3	
• 4-2	
• 7-2

12



Questions?



• Protocol	must	react	to	failures	

• Failure	of	the	root	node	
• Failure	of	switches	and	links	

• Root	node	sends	periodic	announcement	messages	

• Few	possible	implementations,	but	this	is	simple	to	understand	

• Other	switches	continue	forwarding	messages	

• Detecting	failures	through	timeout	(soft	state)	

• If	no	word	from	root,	time	out	and	send	a	(Y,	0,	Y)	message	to	all	
neighbors	(in	the	graph)!	

• If	multiple	messages	with	a	new	root	received,	send	message	(Y,	d,	X)	

to	the	neighbor	sending	the	message

14

Spanning	Tree	Protocol	++	(incorporating	failures)



Suppose	link	2-4	fails

• 4	will	send	(4,	0,	4)	to	all	its	neighbors	
• 4	will	stop	receiving	announcement	messages	from	the	root	

• Why?	

• At	some	point,	7	will	respond	with	(1,	3,	7)	

• 4	will	now	update	to	(1,	4,	4)	and	send	update	message		

• New	spanning	tree!

15



Questions?



17

The	end	of	Link	Layer	….	

And	the	beginning	of	network	layer	:-D

Built	on	top	of	

reliable	delivery

Built	on	top	of	best-

effort	forwarding

Built	on	top	of	

best-effort	routing

Built	on	top	of	

physical	bit	transfer



• There’s	only	one	path	from	source	to	destination	

• How	do	you	find	that	path?	Ideas?	

• Easy	to	design	routing	algorithms	for	trees	

• Nodes	can	“flood”	packet	to	all	other	nodes

Why	do	we	need	a	network	layer?



• Sends	packet	to	every	node	in	the	
network	

• Step	1:	Ignore	the	links	not	belonging	
to	the	Spanning	Tree	

• Step	2:	Originating	node	sends	“flood”	
packet	out	every	link	(on	spanning	
tree)	

• Step	3:	Send	incoming	packet	out	to	
all	links	other	than	the	one	that	sent	
the	packet

Flooding	on	a	Spanning	Tree



Flooding	Example

Source

Destination

1

3

2

7

6

5

4



Flooding	Example

Source

Destination

1

3

2

7

6

5

4

Eventually all nodes are covered

One copy of packet delivered to destination

1

2

4

7

5

6



• There’s	only	one	path	from	source	to	destination	

• How	do	you	find	that	path?	Ideas?	

• Easy	to	design	routing	algorithms	for	trees	

• Nodes	can	“flood”	packet	to	all	other	nodes	

• Amazing	properties:		

• No	routing	tables	needed!	
• No	packets	will	ever	loop.		
• At	least	(and	exactly)	one	packet	must	reach	the	destination	

• Assuming	no	failures

Routing	via	Flooding	on	Spanning	Tree	…



Three	fundamental	issues!

Source

Destination

1

3

2

7

6

5

4

1

2

4

7

5

6

Issue 1: Each host has to do unnecessary packet processing! 
(to decide whether the packet is destined to the host)



Source

Destination

1

3

2

7

6

5

4

Three	fundamental	issues!

Issue 2: Higher latency! 
(The packets unnecessarily traverse much longer paths)



Source

Destination

1

3

2

7

6

5

4

Three	fundamental	issues!

Issue 2: Lower bandwidth availability! 
(2-6 and 3-1 packets unnecessarily have to share bandwidth)



Questions?



• Network	layer	performs	“routing”	of	packets	to	alleviate	these	issues		

• Uses	routing	tables	

• Lets	understand	routing	tables	first	
• We	will	see	routing	tables	are	nothing	but	…	

• Guess?	
• A	collection	of	(carefully	constructed)	spanning	trees	

• One	per	destination

Why	do	we	need	a	network	layer?



What path will a packet take from Cornell to MIT?

• Routing	tables	allow	finding	path	from	source	to	destination

Routing	Packets	via	Routing	Tables

Cornell

Harvard

MIT

Switch #1

Switch #2

Switch #3



• Finding	path	for	a	packet	from	source	to	destination

Routing	Packets	via	Routing	Tables

Cornell

Harvard

MIT

Switch #1

Switch #2

Switch #3

How to specify whether the packet 
should take Path 1 or Path 2?



Each Switch stores a table indicating the next hop for 
corresponding destination of a packet (called a routing table)

• Suppose	packet	follows	Path	1:	Cornell	-	S#1	-	S#3	-	MIT

Routing	Table

Cornell

Harvard

MIT

Switch	#1

Switch	#2

Switch	#3
L1

L2 L3

L4

L5 L6

DESTINATION NEXT HOP
CORNELL L1

MIT L3
HARVARD L4

DESTINATION NEXT HOP
CORNELL L2

MIT L5
HARVARD L5

DESTINATION NEXT HOP
CORNELL L5

MIT L6
HARVARD L3



• Global	routing	state	is	valid	if:	
• it	always	results	in	deliver	packets	to	their	destinations	

• Goal	of	Routing	Protocols	
• Compute	a	valid	state	

• But	how	to	tell	if	a	routing	state	is	valid?…	
• Think	about	it,	what	could	make	routing	incorrect?

“Valid	Routing	Tables”	(routing	state)



• Global	routing	state	valid	if	and	only	if:	
• There	are	no	dead	ends	(other	than	destination)	
• There	are	no	loops	

• A	dead	end	is	when	there	is	no	outgoing	link	
• A	packet	arrives,	but	..	

• the	routing	table	does	not	have	an	outgoing	link	
• And	that	node	is	not	the	destination	

• A	loop	is	when	a	packet	cycles	around	the	same	set	of	nodes	forever

Validity	of	a	Routing	State



• Suppose	packet	wants	to	go	from	Cornell	to	MIT	using	given	state:

Example:	Routing	with	Dead	Ends

Cornell

Harvard

MIT

Switch #1

Switch #2

Switch #3
L1

L2 L3

L4

L5 L6

DESTINATION NEXT HOP
CORNELL L1

MIT L2
HARVARD L4

DESTINATION NEXT HOP

CORNELL L2

HARVARD L5

DESTINATION NEXT HOP
CORNELL L5

MIT L6
HARVARD L3

No forwarding decision for MIT!

Dead End!
Packet never reaches MIT



Example:	Routing	with	Loops

Cornell

Harvard

MIT

Switch #1

Switch #2

Switch #3
L1

L2 L3

L4

L5 L6

DESTINATION NEXT HOP
CORNELL L1

MIT L3
HARVARD L4

DESTINATION NEXT HOP
CORNELL L2

MIT L2
HARVARD L5

DESTINATION NEXT HOP
CORNELL L5

MIT L5
HARVARD L3

• Suppose	packet	wants	to	go	from	Cornell	to	MIT	using	given	state:

Loop!
Packet never reaches MIT



• How	can	we	verify	given	routing	state	is	valid?	

• How	can	we	produce	valid	routing	state?

Two	Questions



• Check	validity	of	routing	state	for	one	destination	at	a	time…	

• For	each	node:	
• Mark	the	outgoing	link	with	arrow	for	the	required	destination	

• There	can	only	be	one	at	each	node	

• Eliminate	all	links	with	no	arrows	

• Look	what’s	left.	State	is	valid	if	and	only	if		
• Remaining	graph	is	a	spanning	tree	with	destination	as	sink	

• Why	is	this	true?	

• Tree	->	No	loops	
• Spanning	(tree)	->	No	dead	ends

Checking	Validity	of	a	Routing	State



Example	1



Example	1:	Pick	Destination



Example	1:Put	Arrows	on	Outgoing	Ports



Example	1:Remove	unused	Links

Leaves Spanning Tree: Valid



Example	2:



Example	2:

Is this valid?



Example	3:



Example	3:

Is this valid?



• Simple	to	check	validity	of	routing	state	for	a	particular	destination	

• Dead	ends:	nodes	without	arrows	

• Loops:	obvious,	disconnected	from	destination	and	rest	of	the	graph

Checking	Validity	of	a	Routing	State



• How	can	we	verify	given	routing	state	is	valid?	

• How	can	we	produce	valid	routing	state?

Two	Questions



• Easy	to	avoid	dead	ends	

• Avoiding	loops	is	hard	

• The	key	difference	between	routing	protocols	is	how	they	avoid	loops!	

• Try	to	think	a	loop	avoidance	design	for	five	minutes

Creating	Valid	Routing	State



• Remove	enough	links	to	create	a	tree	containing	all	nodes	

• Sounds	familiar?	Spanning	trees!	

• If	the	topology	has	no	loops,	then	just	make	sure	not	sending	packets	
back	from	where	they	came	

• That	causes	an	immediate	loop	

• Therefore,	if	no	loops	in	topology	and	no	formation	of	immediate	loops	
ensures	valid	routing	

• However…	three	challenges	
• Unnecessary	host	resources	used	to	process	packets	
• High	latency	
• Low	bandwidth	(utilization)

#1:	Create	Tree	Out	of	Topology



• A	global	view	of	the	network	makes	computing	paths	without	loops	easy	

• Many	graph	algorithms	for	computing	loop-free	paths	

• For	e.g.,	Dijkstra’s	Algorithm	

• Getting	the	global	view	of	network	is	challenging!

#2:	Obtain	a	Global	View



• Often	getting	a	global	view	of	the	network	is	infeasible	
• Distributed	algorithms	to	compute	feasible	route	

• Approach	A:	Finding	optimal	route	for	maximizing/minimizing	a	metric	

• Approach	B:	Finding	feasible	route	via	exchanging	paths	among	switches

#3:	Distributed	Route	Computation



Welcome	to	the	Network	Layer!

• THE	functionality:	delivering	the	data	

• THE	protocol:	Internet	Protocol	(IP)	
• To	achieve	its	functionality	(delivering	the	data),	IP	protocol	has	
three	responsibilities	

• Addressing	(next	lecture)	
• Encapsulating	data	into	packets	(actually	datagrams;	next	lecture)	

• Routing	(using	a	variety	of	protocols;	several	lectures)



Next	lecture!


