

Computer Networks: Architecture and Protocols

Lecture 6 Data Link Layer

Spring 2018 Rachit Agarwal

Announcements

- We will have a "live" coding class on Thursday next week (02/22)
 - Please bring your laptops
 - Its gonna be a lot of fun!
 - We will learn how to implement sockets, etc.
- Please read Chapter 1 of the textbook!
- And try to solve problems at the end of Chapter 1 of the textbook
 - For extra practice
 - Ask us questions on Piazza
- Remember: in-class quizzes can happen at any time

Quick recap from last lecture

Three design principles

- How to break system into modules
 - Layering
- Where are modules implemented
 - End-to-End Principle
- Where is state stored?
 - Fate-Sharing

Internet Design Goals

- Build something that works
- Connect existing networks
- Robust in face of failures
- Support multiple types of delivery service
- Accommodate a variety of networks
- Allow distributed management
- Easy host attachment
- Cost effective
- Allow resource accountability

Context for Today's Lecture

- You now understand
 - Network sharing (in depth)
 - Architectural principles and design goals (in depth)
 - End-to-end working of the Internet (at a high-level)
- Now its time to dive deep:
 - Link Layer (~1 week)
 - Network Layer (~4 weeks)
 - Transport Layer (~3 weeks)
- Today: Link layer

Goals for Today's Lecture

- Link layer:
 - Broadcast medium
 - Sharing broadcast medium
 - CSMA/CD

Data Link Layer

- Communication Medium
 - Point-to-point
 - The high-level ideas discussed so far were for point-to-point
 - Broadcast
 - Original design of Link layer protocols
 - More recent versions have moved to point-to-point
 - We will discuss why so!
- Network Adapters (e.g., NIC network interface card)
 - The hardware that "connects" a machine to the network
 - Has an "address" MAC (Medium access control) address

Point-to-Point vs. Broadcast Medium

- Point-to-point: dedicated pairwise communication
 - E.g., long distance fiber link
 - E.g., Point-to-point link between two routers
- Broadcast: shared wire or medium
 - Traditional Ethernet
 - 802.11 wireless LAN

Data Link Layer: Broadcast (until ~2000s)

Ever been to a party?

- Tried to have an interesting discussion?
- Fundamental challenge?
 - Collisions

Broadcast Medium: Desirable properties

- One and only one: data delivery
- How do we design a link-layer protocol that ensures data delivery?

link-layer "protocol"

Group Exercise:

Multiple source-destination pairs Design a protocol that allows sharing the broadcast medium

12

Attempt 1: Time Sharing

- Time sharing
 - Everybody gets a turn to speak
- Goods
 - Never have a collision
- Problem
 - Underutilization of resources
 - During my turn, I may have nothing to speak
 - When I have something to speak, I wait for my turn

Where it all Started: AlohaNet

- Norm Abramson:
 - Left Stanford in 1970
 - So he could SURF
 - Set up first data communication system for Hawaiian islands
 - Central hub at University of Hawaii, Oahu

Aloha Signaling

- Two channels: random access, broadcast
- Sites send packets to hub
 - Random access channel
 - Each site transmits packets at "random" times
 - If a packet not received (due to collision), site resends
- Hub sends packets to all sites
 - Broadcast channel
 - Sites can receive even if they are also sending

Ethernet:

- Bob Metcalfe:
 - Xerox PARC
 - Visits Hawaii, and gets the idea
 - Shared wired medium

Lesson:

If you want to invent great things, go to Hawaii :-)

Sharing a broadcast channel

- Context: a shared broadcast channel
 - Must avoid having multiple nodes speaking at once
 - Otherwise collisions lead to garbled data
 - Need distributed algorithm for sharing channel
 - Algorithm determines which node can transmit
- Three classes of techniques
 - Channel partitioning: divide channel into pieces
 - Taking turns: scheme for trading off who gets to transmit
 - Random access: allow collisions, and then recover
 - More in the Internet style!

Link Layer (MAC) Protocol

- When node has packet to send
 - Transmit at full channel data rate
 - No a priori coordination among nodes
- Two or more transmitting nodes => collision
 - Data lost
- Link-layer protocol specifies:
 - How to detect collision
 - How to recover from collisions

LETS TRY AGAIN!

Group Exercise:

Multiple source-destination pairs Design a protocol that allows sharing the broadcast medium

20

CSMA (Carrier Sense Multiple Access)

- CSMA: listen before transmit
 - If channel sensed idle: transmit entire frame
 - If channel sensed busy: defer transmission
- Human analogy: don't interrupt others!
- Does this eliminate all collisions?
 - No, because of nonzero propagation delay

CSMA Collisions

Propagation delay: two nodes may not hear each other's before sending.

CSMA reduces but does not eliminate collisions.

Biggest remaining problem?

Collisions still take the full transmission slot!

CSMA/CD (Collision Detection)

- CSMA/CD: carrier sensing, defering as in CSMA
 - Collisions detected within short tine
 - Colliding transmissions aborted, reducing wastage
- Collision detection easy in wired (broadcast) LANs
 - Compared transmitted, received signals
- Collision detection difficult in wireless LANs

CSMA/CD (Collision Detection)

B and D can tell that collision occurred.

Note: for this to work, need restriction on **minimum frame size** and **maximum distance**.

Why?

Limits on CSMA/CD Network Length

- Latency depends on physical length of link
 - Time to propagate a packet from one end to the other
- Suppose A sends a packet at time t
 - And B sees an idle line at a time just before t+d
 - ... so B happily starts transmitting a packet
- B detects a collision, and sends jamming signal
 - But A can't see collision until *t+2d*

Limits on CSMA/CD Network Length

latency d

- A needs to wait for time 2d to detect collision
 - So, A should keep transmitting during this period
 - ... and keep an eye for a possible collision
- Imposes restrictions. E.g., for 10 Mbps Ethernet:
 - Maximum length of the wire: 2500 meters
 - Minimum length of a frame: 512 bits (64 bytes)
 - 512 bits = 51.2 µsec (at 10 Mbit/sec)
 - For light in vacuum, 51.2 μsec ~ 15,000 meters
 - vs 5,000 meters "round trip" to wait for collision
- What about 10Gbps Ethernet?

How long should you wait?

- After collision when should you resend?
- Should it be immediate
- Should it be a random number with a fixed distribution?

CSMA/CD (Collision Detection)

Ethernet uses CSMA/CD

- Carrier Sense: continuously listen to the channel
 - If idle: start transmitting
 - If busy: wait until idle
- Collision Detection: listen while transmitting
 - No collision: transmission complete
 - Collision: abort transmission; send jam signal
- Random access: exponential back off
 - After collision, transmit after "waiting time"
 - After k collisions, choose "waiting time" from {0, ..., 2^k-1)
 - (Exponentially increasing waiting times)

Performance of CSMA/CD

- Time wasted in collisions
 - Proportional to distance d
- Time spent transmitting a packet
 - Packet length p divided by bandwidth b
- Rough estimate for efficiency (K some constant)

$$E \sim \frac{\frac{p}{b}}{\frac{p}{b} + Kd}$$

- Note:
 - For large packets, small distances, E ~ 1
 - As bandwidth increases, E decreases
 - That is why high-speed LANs are switched

Evolution

- Ethernet was invented as a broadcast technology
 - Hosts share channel
 - Each packet received by all attached hosts
 - CSMA/CD for media access control
- Current Ethernets are "switched" (next lecture)
 - Point-to-point medium between switches;
 - Point-to-point medium between each host and switch
 - No sharing, no CSMA/CD
 - Uses "self-learning" and "spanning tree" algorithms for routing