
Computer	Networks:	
Architecture	and	Protocols

CS4450

Lecture	5	
-	Three	Architectural	Principles	

-	Design	Goals

Spring	2018	
Rachit	Agarwal



Announcements

• You	have	been	a	great	class	so	far	
• Most	of	you	are	quiet	and	paying	attention	

• You	are	giving	great	answers!	
• Even	more	importantly,	you	are	asking	great	questions!	

• Thank	you!	

• Admin:	

• The	office	hours	are	posted,	and	are	on!	
• We	are	on	schedule:	

• Problem	Set	1	is	posted!		

• Solutions	will	be	released	in	1	week.	

• Remember:	in-class	quizzes	can	happen	at	any	time



More	Announcements

• Three	questions:	
• Do	any	of	you	consider	yourself	h4x0r?	
• Do	you	feel	like	you	have	too	much	time	in	your	life?	

• Would	you	like	to	get	exposed	to	networking	research?	

• If	yes,	talk	to	me	—	I	am	willing	to	take	on	two	undergrad	researchers



Context	for	Today’s	Lecture

• So	far,	we	have	discussed	several	high-level	concepts	
• Network	sharing	
• End-to-end	working	of	the	Internet	
• Addressing,	Routing,	Switch/Router	functionality,	etc.		

• And,	have	dived	deep	into	several	topics:	
• Circuit	switching	and	packet	switching	(especially	the	“why”)	
• Delays	(transmission,	propagation,	queueing)	

• You	know	more	about	computer	networks	than	you	may	realize!	

• Today:	Lay	the	foundation	for	rest	of	the	course



Goals	for	Today’s	Lecture

• Three	architectural	principles:	
• Layering	
• End-to-end	principle	
• Fate	Sharing	principle	

• Design	goals	for	computer	networks:	

• Eight	of	them	

• We	will	come	back	to	these	over	and	over	again	

• Almost	every	lecture	in	the	semester	

• Before	we	start,	let	me	outrightly	admit	….	

• First	time	I	learnt	these,	I	said	—	what	the	@#$%	….	

• …	there	are	easier	ways	to	torture	students!	
• Now,	these	have	become	the	guiding	principles	of	my	career!



Quick	recap	from	last	lecture



• Locating	the	destination:	Naming,	addressing	

• Mapping	of	names	to	addresses	using	Domain	Name	System	

• Finding	a	path	to	the	destination:	Routing	
• Distributed	algorithm	that	computes	and	stores	routing	tables	

• Sending	data	to	the	destination:	Forwarding	
• Input	queues,	virtual	output	queues,	output	queues		
• Enablers:	Packet	header	(address),	and	routing	table	(outgoing	link)	
• Queueing	delay:	dependent	on	“network	load”		

• Reliability:	Failure	handling	
• Not	much	discussion,	but	the	question:	hosts	or	networks?

Recap:	four	fundamental	problems!



Recap:	the	final	piece	in	the	story	—	Host	network	stack

Of	Sockets	and	Ports	

• When	a	process	wants	access	to	the	network,	it	opens	a	socket,	which	is	
associated	with	a	port	

• Socket:	an	OS	mechanism	that	connects	processes	to	the	networking	stack	

• Port:	number	that	identifies	that	particular	socket	

• The	port	number	is	used	by	the	OS	to	direct	incoming	packets



• Application	opens	a	socket	that	allows	it	to	connect	to	the	network	stack	

• Maps	name	of	the	web	site	to	its	address	using	DNS	

• The	network	stack	at	the	source	embeds	the	address	and	port	for	both	
the	source	and	the	destination	in	packet	header	

• Each	router	constructs	a	routing	table	using	a	distributed	algorithm	

• Each	router	uses	destination	address	in	the	packet	header	to	look	up	the	
outgoing	link	in	the	routing	table	

• And	when	the	link	is	free,	forwards	the	packet		

• When	a	packet	arrives	the	destination:		

• The	network	stack	at	the	destination	uses	the	port	to	forward	the	
packet	to	the	right	application

Recap:	the	end-to-end	story



Questions?



Three	Architectural	Principles



• How	to	break	system	into	modules?	

• Classic	decomposition	into	tasks	

• Where	are	modules	implemented?	

• Hosts?	
• Routers?	
• Both?	

• Where	is	state	stored?	

• Hosts?	
• Routers?	
• Both?

Network	Modularity	Decisions



• How	to	break	system	into	modules	

• Layering	

• Where	are	modules	implemented	

• End-to-End	Principle	

• Where	is	state	stored?	
• Fate-Sharing

Leads	to	three	design	principles



Layering



• Bits	on	wire	

• Packets	on	wire	

• Deliver	packets	to	hosts	across	local	network	

• Deliver	packets	to	host	across	networks	

• Deliver	packets	reliably,	to	correct	process	

• Do	something	with	the	data

Breakdown	end-to-end	functionality	into	tasks



• Bits	on	wire	

• Packets	on	wire	

• Deliver	packets	to	hosts	across	local	network	

• Deliver	packets	to	host	across	networks	

• Deliver	packets	reliably,	to	correct	process	

• Do	something	with	the	data

Breakdown	end-to-end	functionality	into	tasks



• Bits	on	wire	(Physical)	

• Packets	on	wire	

• Deliver	packets	to	hosts	across	local	network	(Datalink)	

• Deliver	packets	to	host	across	networks	(Network)	

• Deliver	packets	reliably,	to	correct	process	(Transport)	

• Do	something	with	the	data	(Application)

Resulting	Modules	(Layers)



• Application:	Providing	network	support	for	apps	

• Transport	(L4):	(Reliable)	end-to-end	delivery	

• Network	(L3):	Routing	

• Datalink	(L2):	Local	delivery	(forwarding)	

• Physical	(L1):	Bits	on	wire

Five	Layers	(Top	-	Down)



• A	kind	of	modularity	

• Functionality	separated	into	layers	
• Layer	n	interfaces	with	only	layer	n-1	and	layer	n+1	

• Hides	complexity	of	surrounding	layers

Layering

Built	on	top	of	
reliable	delivery

Built	on	top	of	best-
effort	forwarding

Built	on	top	of	
best-effort	routing

Built	on	top	of	
physical	bit	transfer



An	end-to-end	view	of	the	layers

• Application:	Providing	network	support	for	apps	
• Transport	(L4):	(Reliable)	end-to-end	delivery	
• Network	(L3):	Routing	
• Datalink	(L2):	Local	delivery	(forwarding)	
• Physical	(L1):	Bits	on	wire

Why	does	the	packet	go	all	the	way	to	network	layer	at	each	hop?



Questions?



• How	to	break	system	into	modules?	

• Layering	

• Where	are	modules	implemented?	

• End-to-End	Principle	

• Where	is	state	stored?	

• Fate-Sharing

Three	Internet	Design	Principles



• Layers	are	simple	if	only	on	a	single	machine	

• Just	stack	of	modules	interacting	with	those	above/below	

• But	we	need	to	implement	layers	across	machines	

• Hosts	
• Routers/switches	

• What	gets	implemented	where?	And	why?

Distributing	Layers	across	Network	



• Bits	arrive	on	wire,	must	make	it	up	to	application	

• Therefore,	all	layers	must	exist	at	host!

What	gets	implemented	on	Host?



• Bits	arrive	on	wire	
• Physical	layer	necessary	

• Packets	must	be	forwarded	to	next	router/switch	

• Datalink	layer	necessary	

• Routers	participate	in	global	delivery	
• Network	layer	necessary	

• Routers	do	not	support	reliable	delivery	
• Transport	layer	(and	above)	not	supported	
• Why?

What	gets	implemented	on	Router?



• Lower	three	layers	implemented	everywhere	

• Top	two	layers	only	implemented	at	hosts

Visualizing	what	gets	implemented	where

End	host

Router/switch



• Layering	doesn't	tell	you	what	services	each	layer	should	provide	

• What	is	an	effective	division	of	responsibility	between	various	layers?

But	why	implemented	this	way?



If	a	funcdon	can	completely	and	correctly	be	implemented	only	with	the	
knowledge	and	help	of	the	applicadon	standing	at	the	endpoints	of	the	
communicadon	system,	

then	providing	that	funcdon	as	a	feature	of	the	communicadon	system	
itself	is	not	possible.		

Somedmes	providing	an	incomplete	version	of	that	funcdon	as	a	feature	
of	the	communicadon	system	itself	may	be	useful	as	a	performance	
enhancement.

End-to-end	Principle



End-to-end	Principle:	an	example

• Suppose	each	link	layer	transmission	is	reliable	

• Does	that	ensure	end-to-end	(application-to-application)	reliability?		

• Suppose	network	layer	is	reliable	
• Does	that	ensure	end-to-end	(application-to-application)	reliability?



If	a	funcdon	can	completely	and	correctly	be	implemented	only	with	the	
knowledge	and	help	of	the	applicadon	standing	at	the	endpoints	of	the	
communicadon	system,	

then	providing	that	funcdon	as	a	feature	of	the	communicadon	system	
itself	is	not	possible.		

Somedmes	providing	an	incomplete	version	of	that	funcdon	as	a	feature	
of	the	communicadon	system	itself	may	be	useful	as	a	performance	
enhancement.

End-to-end	Principle:	lets	read	again



Assume	the	condidon	(IF)	holds.	Then,	

• End-to-end	implementation	
• Correct	
• Generalized,	and	simplifies	lower	layers	

• In-network	implementation	
• Insufficient	
• May	help	—	or	hurt	—	performance

End-to-end	Principle	(Interpretation)



What	does	the	end	mean?

End-to-end	Principle	(Interpretation)



• Everyone	knows	what	it	is	
• So,	you	must!	

• Everyone	believes	it	
• So,	you	must!	

• Nobody	knows	what	it	means	

• We	are	all	doomed	anyways.

End-to-end	Principle	(Three	things	to	know)



Questions?



• How	to	break	system	into	modules?	

• Layering	

• Where	are	modules	implemented?	

• End-to-End	Principle	

• Where	is	the	state	stored?	

• Fate-sharing

Three	Internet	Design	Principles



• Note	that	the	end-to-end	principle	relied	on	“fate-sharing”	
• Invariants	only	break	when	endpoints	themselves	break	

• Minimize	the	dependence	on	other	network	elements	

• This	should	dictate	placement	of	state

Fate-Sharing



• When	storing	state	in	a	distributed	system,	colocate	it	with	entities	that	
rely	on	that	state	

• Only	way	failure	can	cause	loss	of	the	critical	state	is	if	the	entity	that	
cares	about	it	also	fails	…	
• …	in	which	case	it	doesn’t	matter	

• Often	argues	for	keeping	network	state	at	end	hosts	rather	than	inside	
routers	
• E.g.,	packet	switching	rather	than	circuit	switching

General	Principle:	Fate-Sharing



Questions?



• How	to	break	system	into	modules	

• Dictated	by	layering	

• Where	modules	are	implemented	

• Dictated	by	End-to-End	Principle	

• Where	state	is	stored	

• Dictated	by	Fate	Sharing

Decisions	and	their	Principles



From	Architecture	to	Design:	

Design	Goals



• Wrote	a	paper	in	1988	that	tried	to	capture	why	the	Internet	turned	out	
as	it	did	

• It	described	an	ordered	list	of	priorities	that	informed	the	decision	

• What	do	you	think	those	priorities	were?

David	Clark



• Connect	existing	networks	

• Robust	in	face	of	failures	

• Support	multiple	types	of	delivery	services	

• Accommodate	a	variety	of	networks	

• Allow	distributed	management	

• Easy	host	attachment	

• Cost	effective	

• Allow	resource	accountability

Internet	Design	Goals	(Clark	’88)



Want	one	protocol	that	could	be	used	to	connect	any	pair	of	(existing)	
networks	

• Different	networks	may	have	different	needs	

• For	some:	reliable	delivery	more	important	

• For	others:	performance	more	important	

• But	there	is	one	need	that	every	network	has:	connectivity		

• The	Internet	Protocol	(IP)	is	that	unifying	protocol	
• All	(existing)	networks	must	be	able	to	implement	it

#1:	Connect	Existing	Networks



As	long	as	network	is	not	partitioned,	two	hosts	should	be	able	to	
communicate	(eventually)	

• Must	eventually	recover	from	failures	

• Very	successful	in	the	past;	unclear	how	relevant	now	
• Availability	is	becoming	increasingly	important	than	recovery

#2:	Robust	in	Face	of	Failures



Different	delivery	services	(applications)	should	be	able	to	co-exist	

• Already	implies	an	application-neutral	framework	

• Build	lowest	common	denominator	service	

• Again:	connectivity	
• Applications	that	need	reliability	may	use	it	

• Applications	that	do	not	need	reliability	can	ignore	it	

• This	isn’t	as	obvious	as	it	seems…	

• What	would	applications	in	2050	need?

#3:	Support	Multiple	Types	of	Delivery	Services



Questions?



Must	be	able	to	support	different	networks	with	different	hardware	

• Incredibly	successful!	
• Minimal	requirements	on	networks	

• No	need	for	reliability,	in-order,	fixed	size	packets,	etc.	
• A	result	of	aiming	for	lowest	common	denominator	

• Again:	Focus	on	connectivity	
• Let	networks	do	specific	implementations	for	other	functionalities	

• Automatically	adapt:	WiFi,	LTE,	3G,	4G,	5G	….

#4:	Variety	of	Networks



No	need	to	have	a	single	“vantage”	point	to	manage	networks	

• Both	a	curse	and	a	blessing	
• Important	for	easy	deployment	

• Makes	management	hard	today	

• Recent	efforts	have	improved	management	of	individual	networks	

• But	no	attempt	to	manage	the	Internet	as	a	whole…	

• What	might	make	this	complex?

#5:	Decentralized	Management



The	mechanism	that	allows	hosts	to	attach	to	networks	must	be	made	as	
easy	as	possible,	but	no	easier		

• Clark	observes	that	cost	of	host	attachment	may	be	higher	because	hosts	
had	to	be	smart	

• But	the	administrative	cost	of	adding	hosts	is	very	low,	which	is	probably	
more	important	

• Plug-and-play	kind	of	behavior…	

• And	now	most	hosts	are	smart	for	other	reasons	
• So	the	cost	is	actually	minimal…

#6:	Easy	Host	Attachment



Make	networks	as	cheap	as	possible,	but	no	cheaper	

• Cheaper	than	circuit	switching	at	low	end	

• More	expensive	than	circuit	switching	at	high	end	

• Not	a	bad	compromise:	

• Cheap	where	it	counts	(low-end)	
• More	expensive	for	those	who	can	pay…

#7:	Cost	Effective



Each	network	element	must	be	made	accountable	for	its	resource	usage	

• Failure!

#8:	Resource	Accountability



“We	reject	kings,	presidents	and	voting.	We	believe	in	rough	
consensus	and	running	code.”	

-	-	David	Clark

Internet	Motto



• Build	something	that	works	

• Connect	existing	networks	

• Robust	in	face	of	failures	

• Support	multiple	types	of	delivery	service	

• Accommodate	a	variety	of	networks	

• Allow	distributed	management	

• Easy	host	attachment	

• Cost	effective	

• Allow	resource	accountability

Real	Goals



• What	goals	are	missing	from	this	list?	

• Suggestions?	

• What	would	the	resulting	design	look	like?

Questions	to	think	about



• Performance	

• Security	
• Resilience	to	attacks	(denial-of-service)	
• Endpoint	security	
• Tracking	down	misbehaving	users	

• Privacy	

• Availability	

• Resource	sharing	(fairness,	etc.)	

• ISP-level	concerns	
• Economic	issues	of	interconnection

Some	of	the	missing	issues



Questions?



• Beginning	of	“Design	of	computer	networks”	

• Start	with	Layer	1	and	Layer	2	
• Physical	bits	(very	little)	
• Local	best-effort	forwarding	
• Lot	of	interesting	aspects	
• Lot	of	group	activities	
• …

Next	lecture


