
Computer	Networks:	
Architecture	and	Protocols

CS4450

Lecture	4	
-	Packet	Delays	

-	How	the	Internet	works	
-	Three	Architectural	Principles

Spring	2018	
Rachit	Agarwal

Context	for	and	Goals	of	Today’s	Lecture

• Context:	
• Today’s	lecture	is	going	to	be	one	of	the	hardest	lectures	
• If	you	understand	everything	

• There	is	something	wrong!	

• Goals:	
• How	does	the	Internet	work?	

• An	end-to-end	view	

• Three	Principles

But,	as	usual,	lets	start	with:		

what	we	learnt	last	lecture

• Handling	failures	
• Resource	underutilization	
• Blocked	connections	
• Connection	set	up	overheads	
• Per-connection	state	in	switches	(scalability	problem)

Recap:	Challenges	with	Circuit	switching	(reservation)

• Break	data	into	smaller	pieces	

• Packets!	

• Transmit	the	packets	without	any	reservations	

• And,	hope	for	the	best

Recap:	Solution:	Packet	switching

• Goods:	
• Easier	to	handle	failures	
• No	resource	underutilization	

• A	source	can	send	more	if	others	don’t	use	resources	

• No	blocked	connection	problem	

• No	per-connection	state	
• No	set-up	cost	

• Not-so-goods:	
• Unpredictable	performance	

• High	latency	
• Packet	header	overhead

Recap:	Packet	switching	summary

• Consists	of	six	components	

• Link	properties:	
• Transmission	delay		

• Propagation	delay	

• OS	internals:	
• Processing	delay	
• Queueing	delay	

• Traffic	matrix	and	switch	internals:	

• Processing	delay	
• Queueing	delay	

• First,	consider	transmission,	propagation	delays	

• Queueing	delay	and	processing	delays	later	in	the	course

Recap:	Deep	dive	into	one	link:	packet	delay/latency

• Transmission	delay:	

• Time	taken	to	push	all	the	bits	of	a	packet	into	a	link	

• =	Packet	size	/	Link	bandwidth	

• Propagation	delay:	
• Time	taken	to	move	one	bit	from	one	end	of	the	link	to	other	

• =	Link	length	/	Speed	of	light

Recap:	Transmission	and	propagation	delay

Questions?

Today’s	lecture

1. Dive	into	end-to-end:	from	source	to	destination	

2. First	look	into	switches:	routing,	queueing,	forwarding	

3. First	look	into	network	stack:	sockets,	ports,	“the	stack”	

4. Second	look	into	the	stack:	layers		

5. Why	layering?

First	look	into	end-to-end

Source

Destination

Source

Destination

End-to-end:	what	mechanisms	do	we	need?

• Locating	the	destination:	Naming,	addressing	

• Finding	a	path	to	the	destination:	Routing	

• Sending	data	to	the	destination:	Forwarding	

• Reliability:	Failure	handling

Four	fundamental	problems!

Naming,	Routing,	Forwarding,	Reliability	

• Each	is	motivated	by	a	clear	need	

• The	solutions	are	not	always	clean	or	deep	

• But	if	you	keep	in	mind	what	the	problem	is	

• You’ll	be	able	to	understand	the	solutions	
• When	the	right	time	comes	:-)

Four	fundamental	problems!

• Network	Address:	where	host	is	located	
• Requires	an	address	for	the	destination	host	

• can	be	multiple	headers	

• Network	Name:	which	host	it	is	

• why?	

• When	you	move	server	to	new	building	

• Name	doesn’t	change	

• Address	does	change	

• Same	thing	with	your	own	name	and	address!	

• Remember	the	analogy:	human	names,	addresses,	post	office,	letters

Fundamental	problem	#1:	Host	Names	and	Addresses

• Consider	when	you	access	a	web	page	
• Insert	URL	into	browser	(eg,	www.cornell.edu)	
• Packets	sent	to	web	site	(reliably)	
• Packet	reach	application	on	destination	host	

• How	do	you	get	to	the	website?	
• URL	is	user-level	name	(eg,	www.cornell.edu)	

• Network	needs	address	(eg,	where	is	www.cornell.edu)?	

• Must	map	names	to	addresses	

• Just	like	we	use	an	address	book	to	map	human	names	to	addresses

Names	versus	addresses

http://www.cornell.edu
http://www.cornell.edu
http://www.cornell.edu

• On	the	Internet,	we	only	name	hosts	(sort	of)	

• URLs	are	based	on	the	name	of	the	host	containing	the	content	(that	
is,	www.cornell.edu	names	a	host)	

• Before	you	can	send	packets	to	www.cornell.edu,	you	must	resolve	names	
into	the	host’s	address	

• Done	by	the	Domain	Name	System	(DNS)

Mapping	Names	to	Addresses

The	source	knows	the	name;		

Maps	that	name	to	an	address	using	DNS!

http://www.cornell.edu
http://www.cornell.edu

Questions?

Routing	to	destination	

• Given	destination	address,	how	does	each	switch/router	know	where	to	
send	the	packet	so	that	the	packet	reaches	its	destination	

• When	a	packet	arrives	at	a	router	

• a	routing	table	determines	which	outgoing	link	the	packet	is	sent	on

Fundamental	problem	#2

• Distributed	algorithm	that	runs	between	routers	

• Distributed	means	no	single	router	has	“full”	view	of	the	network	

• Exchange	of	messages	to	gather	“enough”	information	…	

• …	about	the	network	topology	

• Compute	paths	through	that	topology	

• Store	forwarding	information	in	each	router	

• If	packet	is	destined	for	X,	send	out	link	l1	
• If	packet	is	destined	for	Y,	send	out	link	l2	
• Can	packets	going	to	different	destinations	sent	out	to	same	port?	

• We	call	this	a	routing	table

Routing	protocols	(conceptually)

Questions?

Queueing	and	Forwarding	of	packets	at	switches/routers	

• Queueing:	When	a	packet	arrives,	store	it	in	“input	queues”		

• Each	incoming	queue	divided	into	multiple	virtual	output	queues	

• One	virtual	output	queue	per	outgoing	link	
• When	a	packet	arrives:	

• Look	up	its	destination’s	address	(how?)	
• Find	the	link	on	which	the	packet	will	be	forwarded	(how?)	
• Store	the	packet	in	corresponding	virtual	output	queue	

• Forwarding:	When	the	outgoing	link	free	

• Pick	a	packet	from	the	corresponding	virtual	output	queue	

• forward	the	packet!

Fundamental	problem	#3

• Packets	must	describe	where	it	should	be	sent	

• Requires	an	address	for	the	destination	

• Packets	must	describe	where	its	coming	from	

• For	handling	failures,	etc.	
• Requires	an	address	for	the	source	

• Packets	must	carry	data	

• can	be	bits	in	a	file,	image,	whatever

What	must	packets	carry	to	enable	forwarding?

Header Data

What	does	a	switch/router	look	like

Input	queue

Virtual	output	queue

Output	queue

• Each	input	queue	could	send	packets	to	each	output	queue	at	full	rate	
• That	is,	a	switch	architecture	is	heavily	parallelized	
• Can	always	focus	on	a	single	outgoing	queue	for	design/analysis

Queueing	and	processing	delay:	Case	I	(low	load)

2	packets/time

1	packet/time

Queueing	and	processing	delay:	Case	II	(balanced	load)

2	packets/time

1	packet/time

Queueing	and	processing	delay:	Case	II	(high	load)

2	packets/time

1	packet/time

• Processing	delay	
• Easy;	each	switch/router	needs	to	decide	where	to	put	packet	
• Requires	checking	header,	etc.	

• Queueing	delay	
• Depends	on	network	load	
• As	load	increases,	queueing	delay	increases	

• In	an	extreme	case,	increase	in	network	load	

• results	in	packet	drops

Queueing	and	processing	delay

Questions?

How	do	you	deliver	packets	reliable?	

• Packets	can	be	dropped	along	the	way	
• Buffers	in	router	can	overflow	
• Routers	can	crash	while	buffering	packets	
• Links	can	garble	packets	

• How	do	you	make	sure	packets	arrive	safely	on	an	unreliable	network?	

• Or,	at	least,	know	if	they	are	delivered?	
• Want	no	false	positives,	and	high	change	of	success

Fundamental	problem	#4

• Who	is	responsible	for	this?	(architecture)	

• Network?	
• Host?	

• How	is	it	implemented?	(engineering)	

• We	will	consider	both	perspectives

Two	questions	about	reliability

Questions?

• We	now	have	the	address	of	the	web	site	

• And,	a	route/path	to	the	destination	
• And,	mechanisms	in	place	to	forward	the	packets	at	each	switch/router	

• In	a	reliable	manner	

• So,	we	can	send	packets	from	source	to	destination	

• Are	we	done?	

• When	a	packet	arrives	at	a	host,	what	does	the	host	do	with	it?	

• To	which	process	(application)	should	the	packet	be	sent?	

• If	the	packet	header	only	has	the	destination	address,	how	does	the	host	
know	where	to	deliver	packet?	

• There	may	be	multiple	applications	on	that	destination

Finishing	our	story

• Who	puts	the	source	address,	source	port,	destination	address,	

destination	port	in	the	packet	header?

And	while	we	are	finishing	our	story	….

The	final	piece	in	the	game:	End-host	stack

Of	Sockets	and	Ports	

• When	a	process	wants	access	to	the	network,	it	opens	a	socket,	which	is	
associated	with	a	port	

• Socket:	an	OS	mechanism	that	connects	processes	to	the	networking	stack	

• Port:	number	that	identifies	that	particular	socket	

• The	port	number	is	used	by	the	OS	to	direct	incoming	packets

• Packet	Header	must	include:	

• Destination	address	(used	by	network)	
• Destination	port	(used	by	network	stack)	
• And?	
• Source	address	(used	by	network)	
• Source	port	(used	by	network	stack)	

• When	a	packet	arrives	at	the	destination	host,	packet	is	delivered	to	the	
socket	associated	with	the	destination	port	

• More	details	later

Implications	for	Packet	Header

• Network:	Deliver	packets	from	host	to	host	(based	on	address)	

• Network	stack	(OS):	Deliver	packets	to	appropriate	socket	(based	on	port)	

• Applications:		
• Send	and	receive	packets	
• Understand	content	of	packet	bodies

Separation	of	concerns

Secret	of	the	Internet’s	success	is	getting	

these	and	other	abstractions	right

• Why	is	separation	of	concerns	important?	

• Separation	of	concerns	~	Modularity	

• If	each	component’s	task	well-defined,	one	can	focus	design	on	that	task	

• And	replace	it	with	any	other	implementation	that	does	that	task	

• Without	changing	anything	else

Who	cares?

• Modularity	is	nothing	more	than	decomposing	programs/systems	into	
smaller	units.	
• A	clean	“separation	of	concerns”	

• Plays	a	crucial	role	in	computer	science…	

• …	and	networking

What	is	Modularity

“Modularity	based	on	abstraction	is	the	way	to	get	things	done”		
-	-	Barbara	Liskov

Modularity	in	Computer	Science

• Partition	system	into	modules	

• Each	module	has	well	defined	interface	

• Interfaces	give	flexibility	in	implementation	

• Changes	have	limited	scope		

• Examples	
• Libraries	encapsulating	set	of	functionalities	
• Programming	language	abstracts	away	CPU	

• The	trick	is	to	find	the	right	modularity	

• The	interfaces	should	be	long-lasting	
• If	interfaces	are	changing	often,	modularity	is	wrong

Computer	System	Modularity

• The	need	for	modularity	still	applies	

• And	is	even	more	important!	(why?)	

• Network	implementations	not	just	distributed	across	many	lines	of	code	

• 	Normal	modularity	“organizes”	that	code	

• Networking	is	distributed	across	many	machines	
• Hosts	
• Routers

Network	System	Modularity

• How	to	break	system	into	modules?	

• Classic	decomposition	into	tasks	

• Where	are	modules	implemented?	

• Hosts?	
• Routers?	
• Both?	

• Where	is	state	stored?	

• Hosts?	
• Routers?	
• Both?

Network	Modularity	Decisions

• How	to	break	system	into	modules	

• Layering	

• Where	are	modules	implemented	

• End-to-End	Principle	

• Where	is	state	stored?	
• Fate-Sharing

Leads	to	three	design	principles

Layering

• Bits	on	wire	

• Packets	on	wire	

• Deliver	packets	to	hosts	across	local	network	

• Deliver	packets	to	host	across	networks	

• Deliver	packets	reliably,	to	correct	process	

• Do	something	with	the	data

Breakdown	into	tasks

• Bits	on	wire	(Physical)	

• Packets	on	wire	

• Deliver	packets	to	hosts	across	local	network	(Datalink)	

• Deliver	packets	to	host	across	networks	(Network)	

• Deliver	packets	reliably,	to	correct	process	(Transport)	

• Do	something	with	the	data	(Application)

Resulting	Modules	(Layers)

• Application:	Providing	network	support	for	apps	

• Transport	(L4):	(Reliable)	end-to-end	delivery	

• Network	(L3):	Global	best-effort	delivery	

• Datalink	(L2):	Local	best-effort	delivery	

• Physical:	Bits	on	wire

Five	Layers	(Top	-	Down)

• A	kind	of	modularity	

• Functionality	separated	into	layers	
• Layer	n	interfaces	with	only	layer	n-1	

• Hides	complexity	of	surrounding	layers	

• Evolution	of	“modules”	

• (IP)	Connectivity	becomes	a	commodity

Layering

• Each	layer:	
• Depends	on	the	layer	below	
• Supports	layer	above	
• Independent	of	others	

• Multiple	versions	in	layer	

• Interfaces	differ	somewhat	

• Components	pick	which	lower-

level	protocol	to	use	

• But	only	one	IP	layer	
• Unifying	protocol	

Three	Observations

Layering	“modularized”	the	Internet	architecture	with	
flexible	open	interfaces		

which	helped	spur	innovagon

Layering	and	Innovation

• Innovation	at	most	levels:	

• Applications	(lots)	
• Transport	(few)	
• Datalink	(few)	
• Physical	(lots)	

• Innovation	proceeded	largely	in	
parallel	

• Payoff	of	modularity!	

• Pursued	by	very	different	
communities	

• Like	systems	and	chip	designers

Layering	crucial	to	Internet’s	success

Questions?

• How	to	break	system	into	modules?	

• Layering	

• Where	are	modules	implemented?	

• End-to-End	Principle	

• Where	is	state	stored?	

• Fate-Sharing

Three	Internet	Design	Principles

• Layers	are	simple	if	only	on	a	simple	machine	

• Just	stack	of	modules	interacting	with	those	above/below	

• But	we	need	to	implement	layers	across	machines	

• Hosts	
• Routers	(Switches)	

• What	gets	implemented	where?

Distributing	Layers	across	Network	

• Bits	arrive	on	wire,	must	make	it	up	to	application	

• Therefore,	all	layers	must	exist	at	host!

What	gets	implemented	on	Host?

• Bits	arrive	on	wire	
• Physical	layer	necessary	

• Packets	must	be	delivered	to	next	hop	

• Datalink	layer	necessary	

• Routers	participate	in	global	delivery	
• Network	layer	necessary	

• Routers	do	not	support	reliable	delivery	
• Transport	layer	(and	above)	not	supported

What	gets	implemented	on	Router?

• Lower	three	layers	implemented	everywhere	

• Top	two	layers	only	implemented	at	hosts

Simple	Diagram

• Layering	doesn't	tell	you	what	services	each	layer	should	provide	

• What	is	an	effective	division	of	responsibility	between	various	layers?

But	why	implemented	this	way?

If a function can completely and correctly be implemented only
with the knowledge and help of the application standing at the
endpoints of the communication system,

then providing that function as a feature of the communication
system itself is not possible.

Sometimes providing an incomplete version of that function as a
feature of the communication system itself may be useful as a
performance enhancement.

End-to-end	Principle

Suppose	the	link	layer	is	reliable.	Does	that	ensure	reliable	data	transfer?	

Suppose	the	network	layer	is	reliable.	Does	that	ensure	reliable	data	

transfer?	

machine machine

Example: file transfer

Suppose the link layer is reliable. Does that ensure
reliable file transfer?

Suppose the network layer is reliable. Does that
ensure reliable file transfer?

disk disk

file transfer
application

file transfer
application

network

flow of data

End-to-end	Principle:	an	example

Assume	the	condigon	(IF)	holds.	Then,	

• End-to-end	implementation	
• Correct	
• Generalized,	and	simplifies	lower	layers	

• In-network	implementation	
• Insufficient	
• May	help	—	or	hurt	—	performance

Examples?	Contradicfons?

End-to-end	Principle	(Interpretation)

What	does	the	end	mean?

End-to-end	Principle	(Interpretation)

• Failure	avoidance?	

• Failure	reaction?	

• Routing?	

• Topology	discovery?	

• Path	Selection?	

• Security?	

• Network	management?	

• Resource	management?

Group	Exercise	4	

Where	shall	we	implement	the	following?

• Where	to	implement	functionality	is	complicated	

• No	right	or	wrong	answer	

• But	everyone	agrees	that	reliability	does	not	belong	in	the	network	

• Multicast	is	a	good	test	case

Summary

Questions?

• How	to	break	system	into	modules?	

• Layering	

• Where	are	modules	implemented?	

• End-to-End	Principle	

• Where	is	the	state	stored?	

• Fate-sharing

Three	Internet	Design	Principles

• Note	that	E2E	principle	relied	on	“fate-sharing”	
• Invariants	only	break	when	endpoints	themselves	break	

• Minimize	the	dependence	on	other	network	elements	

• This	should	dictate	placement	of	storage

Fate-Sharing

• When	storing	state	in	a	distributed	system,	colocate	it	with	entities	that	

rely	on	that	state	

• Only	way	failure	can	cause	loss	of	the	critical	state	is	if	the	entity	that	
cares	about	it	also	fails	…	

• …	in	which	case	it	doesn’t	matter	

• Often	argues	for	keeping	network	state	at	end	hosts	rather	than	inside	
routers	

• E.g.,	packet-switching	rather	than	circuit-switching

General	Principle:	Fate-Sharing

• How	to	break	system	into	modules	

• Dictated	by	layering	

• Where	modules	are	implemented	

• Dictated	by	End-to-End	Principle	

• Where	state	is	stored	

• Dictated	by	Fate	Sharing

Decisions	and	their	Principles

• The	Internet	is	a	huge,	complicated	system	

• One	can	study	the	parts	in	isolation	
• Routing	
• Ports,	sockets	
• Network	stack	
• …	

• But	the	pieces	all	fit	together	in	a	particular	way	

• Today	was	quick	overview	of	how	pieces	fit…	
• Don’t	worry	if	you	didn’t	understand	much	of	it	

• You	probably	absorbed	more	than	you	realize

Today’s	lecture

