
Computer	Networks:	
Architecture	and	Protocols

CS4450

Lecture	3	
-	“Packets”	and	“Flows”	
-	How	the	Internet	works

Spring	2018	
Rachit	Agarwal



Context	for	and	Goals	of	Today’s	Lecture

• Context:	
• Today’s	lecture	is	going	to	be	one	of	the	hardest	lectures	
• If	you	understand	everything	

• There	is	something	wrong!	

• Goals:	
• Wrap	up	discussion	on	sharing	networks:	

• Packet	switching		
• Delay/latency	

• The	abstraction	of	flow:	
• Packets:	bags	of	bits	
• Flows:	bags	of	packets	

• How	does	the	Internet	work?	
• An	end-to-end	view



But,	as	usual,	lets	start	with:		

what	we	learnt	last	lecture



A	set	of	network	elements	connected	together,	that	implement	a	set	of	
protocols	for	the	purpose	of	sharing	resources	at	the	end	hosts

What	is	a	computer	network?



A	computer	network	can	be	abstractly	represented	as	a	graph

PathSource

Destination

Source

Destination

Path



Sharing	the	network

PathSource

Destination

Source

Destination

Path



• Bandwidth:	Number	of	bits	sent	per	unit	time	(bits	per	second,	or	bps)	

• Propagation	delay:	Time	for	one	bit	to	move	through	the	link	(seconds)	

• Bandwidth-delay	product:	Number	of	bits	“in	flight”	at	any	time	(bits)

Performance	metrics	in	computer	networks!

Bandwidth	x	delayBandwidth

Propagation	
Delay



• Reservations	
• On	demand

Two	approaches	to	sharing	networks



• First:	Reservations	
• Reserve	bandwidth	needed	in	advance	
• Set	up	circuits	and	send	data	over	that	circuit	
• Must	reserve	for	peak	bandwidth	

• Applications	may	generate	data	at	rate	varying	over	time	

• 100MB	in	first	second	

• 10MB	in	second	second	…	

• One	way	to	implement	reservations:	circuit	switching	

• Source	sends	a	reservation	request	for	peak	demand	to	destination	

• Switches/routers	establish	a	“circuit”	
• Source	sends	data	
• Source	sends	a	“teardown	circuit”	message

Two	approaches	to	sharing	networks



Circuit	switching:	an	example	(red	request	fails)

Source

Destination

Source

Destination

Bandwidth	
=	100Mbps

Request	=	
100Mbps



Source

Destination

Source

Destination

Bandwidth	
=	100Mbps

Request	=	
10Mbps

Request	=	
10Mbps

Circuit	switching:	another	example	(red	request	succeeds)



• Goods:	
• Predictable	performance	

• Reliable	delivery	
• Simple	forwarding	mechanism	

• Not-so-goods	
• Handling	failures	
• Resource	underutilization	
• Blocked	connections	
• Connection	set	up	overheads	
• Per-connection	state	in	switches	(scalability	problem)

Circuit	switching	summary



Today’s	lecture

1. Packet	switching	for	sharing	networks	

2. Why	“packets”	and	“flows”?		

3. Understanding	bandwidth	and	latency	for	packets	

4. How	does	Internet	work?



• Not-so-goods	
• Handling	failures	
• Resource	underutilization	
• Blocked	connections	
• Connection	set	up	overheads	
• Per-connection	state	in	switches	(scalability	problem)

Lets	dive	deeper	into	not-so-goods	for	circuit	switching



Source

Destination

Bandwidth	
=	100Mbps

Request	=	
100Mbps

Circuit	switching:	challenges



• Break	data	into	smaller	pieces	

• Packets!

Getting	rid	of	the	challenges



Source

Destination

Source

Destination

Packet	switching:	an	example



Group	Exercise	2:		

How	do	packets	solve	problems	with	reservations?

• Handling	failures	
• Resource	underutilization	
• Blocked	connections	
• Connection	set	up	overheads	
• Per-connection	state	in	switches	(scalability	problem)



• Goods:	
• With	proper	mechanisms	in	place	

• Easier	to	handle	failures	
• No	resource	underutilization	

• A	source	can	send	more	if	others	don’t	use	resources	

• No	blocked	connection	problem	

• No	per-connection	state	
• No	set-up	cost	

• Not-so-goods:	
• Unpredictable	performance	

• High	latency	
• Packet	header	overhead

Packet	switching	summary



Summary	of	network	sharing



• Statistical	multiplexing:	combining	demands	to	share	resources	efficiently	

• Long	history	in	computer	science	

• Processes	on	an	OS	(vs	every	process	has	own	core)	
• Cloud	computing	(vs	every	one	has	own	datacenter)	

• Based	on	the	premise	that:	

• Peak	of	aggregate	load	is	<<	aggregate	of	peak	load	

• Therefore,	it	is	better	to	share	resources	than	to	strictly	partition	them	…

Statistical	multiplexing



Both	embody	statistical	multiplexing	

• Reservation:	sharing	at	connection	level	
• Resources	shared	between	connections	currently	in	system	

• Reserve	the	peak	demand	for	a	flow	

• On-demand:	sharing	at	packet	level	

• Resources	shared	between	packets	currently	in	system	

• Resources	given	out	on	packet-by-packet	basis	
• No	reservation	of	resources

Two	approaches	to	sharing	networks



Questions?



Understanding	delay/latency



• Consists	of	six	components	

• Link	properties:	
• Transmission	delay		

• Propagation	delay	

• OS	internals:	
• Processing	delay	
• Queueing	delay	

• Traffic	matrix	and	switch	internals:	

• Processing	delay	
• Queueing	delay	

• First,	consider	transmission,	propagation	delays	

• Queueing	delay	and	processing	delays	later	in	the	course

Packet	Delay/Latency



• How	long	does	it	take	to	push	all	the	bits	of	a	packet	into	a	link?	

• Packet	size	/	Transmission	rate	of	the	link	

• Transmission	rate	=	Share	of	Bandwidth	

• Example:	

• Packet	size	=	1000Byte	
• Rate	=	100Mbps	

• 1000*8/100*1024*1024	seconds	~76.3us

Transmission	delay



• How	long	does	it	take	to	move	one	bit	from	one	end	of	the	link	to	other?	

• Link	length	/	Propagation	speed	of	link	
• Propagation	speed	~	some	fraction	of	speed	of	light	

• Example:	

• Length	=	30,000	meters	

• Delay	=	30*1000/3*100,000,000	second	=	100us

Propagation	delay



Questions?



Group	Exercise	3:		

How	long	does	it	take	for	a	packet	on	a	link?

Constraints:	
• Packet	size	=	1000Byte	
• Rate	=	100Mbps	

• Length	=	30,000m



Solution	to	Group	Exercise	3:		

How	long	does	it	take	for	a	packet	on	a	link?

Constraints:	
• Packet	size	=	1000Byte	
• Rate	=	100Mbps	

• Length	=	30,000m



Solution	to	Group	Exercise	2:		

How	long	does	it	take	for	a	packet	on	a	link?

176.3us	

Why?



How	does	the	Internet	work?



• Locating	the	destination:	Naming,	addressing	

• Finding	a	path	to	the	destination:	Routing	

• Sending	data	to	the	destination:	Forwarding	

• Failures,	reliability,	etc.:	Distributed	routing	and	congestion	control

Many	mechanisms!

Will	take	the	entire	course	to	learn	these:		

Lets	get	an	end-to-end	picture!



Three	Basic	components	

• End	hosts:	they	send/receive	packets	
• Require	a	“network	stack”	—	networking	software/hardware	

• stack	replicates	some	router/switch	functionality	…	

• …	before	handing	data	to	application	
• More	discussion	in	next	lecture	

• Switches/Routers:	they	forward	packets	

• Links:	connect	end	hosts	to	switches,	and	switches	to	each	other

What	do	computer	networks	look	like?



• Packets	must	describe	where	it	should	be	sent	

• Requires	an	address	for	the	destination	host	

• Packets	must	describe	where	its	coming	from	

• why?	
• For	handling	failures,	etc.	

• Packets	must	carry	data	

• can	be	bits	in	a	file,	image,	whatever

What	must	packets	carry?

Header Data



• Network	Address:	where	host	is	located	
• Requires	an	address	for	the	destination	host	

• can	be	multiple	headers	

• Network	Name:	which	host	it	is	

• why?	

• When	you	move	server	to	new	building	

• Name	doesn’t	change	

• Address	does	change	

• Same	thing	with	your	own	name	and	address!	

• Lets	get	back	to	packet	delivery….

Name	versus	Addresses



Questions?



Routing	packets	through	the	network	elements	to	destination	

• Given	destination	address,	how	does	each	switch/router	forward	packets	
so	that	packet	reaches	destination	

• When	a	packet	arrives	at	a	router,	a	routing	table	determines	which	
outgoing	link	the	packet	is	sent	on	

• outgoing	link	is	often	referred	to	as	a	port	
• The	word	port	has	two	meanings	in	this	lecture	(later)

Fundamental	Challenge	#1



• Distributed	algorithm	run	between	routers	

• Gather	information	about	the	network	topology	

• Compute	paths	through	that	topology	

• Store	forwarding	information	in	each	router	

• If	packet	is	destined	for	X,	send	out	port	p1	
• If	packet	is	destined	for	Y,	send	out	port	p2	
• Can	packets	going	to	different	destinations	sent	out	to	same	port?	

• We	call	this	a	routing	table

Routing	protocols	(conceptually)



• Control	plane:	mechanisms	used	to	compute	routing	tables	(and	other	
forwarding	information)	

• Inherently	global:	must	know	topology	to	compute	

• Routing	algorithm	is	part	of	the	control	plane	

• Time	scale:	per	network	event	

• Data	plane:	using	those	tables	to	actually	forward	packets	
• Inherently	local:	depends	only	on	arriving	packet	and	local	routing	
table	

• Forwarding	mechanism	is	part	of	the	data	plane	

• Time	scale:	per	packet	arrival

Control	plane	vs	data	plane



Questions?



How	do	you	deliver	packets	reliable?	

• Packets	can	be	dropped	along	the	way	
• Buffers	in	router	can	overflow	
• Routers	can	crash	while	buffering	packets	
• Links	can	garble	packets	

• How	do	you	make	sure	packets	arrive	safely	on	an	unreliable	network?	

• Or,	at	least,	know	if	they	are	delivered?	
• Want	no	false	positives,	and	high	change	of	success

Fundamental	challenge	#2



• Who	is	responsible	for	this?	(architecture)	

• Network?	
• Host?	

• How	is	it	implemented?	(engineering)	

• We	will	consider	both	perspectives

Two	questions	about	reliability



• Consider	when	you	access	a	web	page	
• Insert	URL	into	browser	(eg,	www.cornell.edu)	
• Packets	sent	to	web	site	(reliably)	
• Packet	reach	application	on	destination	host	

• How	do	you	get	to	the	website?	
• URL	is	user-level	name	(eg,	www.cornell.edu)	

• Network	needs	address	(eg,	where	is	www.cornell.edu)?	

• Must	map	names	to	addresses

What	challenges	have	we	missed?

http://www.cornell.edu
http://www.cornell.edu
http://www.cornell.edu


• On	the	Internet,	we	only	name	hosts	(sort	of)	

• URLs	are	based	on	the	name	of	the	host	containing	the	content	(that	
is,	www.cornell.edu	names	a	host)	

• Before	you	can	send	packets	to	www.cornell.edu,	you	must	resolve	names	
into	the	host’s	address	

• Done	by	the	Domain	Name	System	(DNS)

Mapping	Names	to	Addresses

http://www.cornell.edu
http://www.cornell.edu


• We	now	have	the	address	of	the	web	site	

• So,	we	can	send	packets	to	host	
• Are	we	done?	

• When	a	packet	arrives	at	a	host,	what	does	the	host	do	with	it?	

• To	which	process	(application)	should	the	packet	be	sent?	

• If	the	packet	header	only	has	the	destination	address,	how	does	the	host	
know	where	to	deliver	packet?	

• There	may	be	multiple	applications	on	that	destination

Finishing	our	story



• Switches/routers	have	“physical	ports”:	
• Places	where	links	connect	to	switches	

• Network	stacks	have	“logical	ports”	
• Logical	places	where	applications	connect	to	stack

Two	Meanings	of	“Port”



• When	a	process	wants	access	to	the	network,	it	open	a	socket,	which	is	
associated	with	a	port	

• This	is	not	a	physical	port,	just	a	logical	one	

• Socket:	an	OS	mechanism	that	connects	processes	to	the	networking	stack	

• Port:	number	that	identifies	that	particular	socket	

• The	port	number	is	used	by	the	OS	to	direct	incoming	packets

Of	Sockets	and	Ports



OS

Web	server	
(port	80)

Echo	server	
(port	7)

service	request	for	
128.2.194.242:80	
(web	server)



• Packet	Header	must	include:	

• Destination	address	(used	by	network)	
• Destination	port	(used	by	network	stack)	

• When	a	packet	arrives	at	the	destination	host,	packet	is	delivered	to	the	
socket	associated	with	the	destination	port	

• More	details	later

Implications	for	Packet	Header



• Why	is	separation	of	concerns	important?	

• Separation	of	concerns	~	Modularity	

• Because	if	each	component	has	a	well-defined	task,	you	can	focus	design	

on	that	task	

• And	replace	it	with	any	other	implementation	that	does	that	task,	

without	changing	anything	else	

• When	you	don’t	have	separation	of	concerns,	then	you	have	one	big	pile	

of	code	that	does	everything	…	

• Very	hard	to	modify,	or	understand

Who	cares?



• Network:	Deliver	packets	from	host	to	host	(based	on	address)	

• Network	stack	(OS):	Deliver	packets	to	appropriate	socket	(based	on	port)	

• Applications:		
• Send	and	receive	packets	
• Understand	content	of	packet	bodies

Separation	of	concerns

Secret	of	the	Internet’s	success	is	getting	

these	and	other	abstractions	right



• How	do	hosts	get	their	addresses?	

• What	else	happens	to	packets	on	path?	

• What	about	security?	

• What	about	specialized	networks?

What	else	are	we	missing?



• Each	is	motivated	by	a	clear	problem	

• The	solutions	are	not	always	clean	or	deep	

• But	if	you	keep	in	mind	what	the	problem	is,	you’ll	be	able	to	understand	
the	solution

These	are	our	topics



• The	Internet	is	a	huge,	complicated	system	

• One	can	study	the	parts	in	isolation	
• Routing	
• Ports,	sockets	
• Network	stack	
• …	

• But	the	pieces	all	fit	together	in	a	particular	way	

• Today	was	quick	overview	of	how	pieces	fit…	
• Don’t	worry	if	you	didn’t	understand	much	of	it	

• You	probably	absorbed	more	than	you	realize

Today’s	lecture




