In many situations, we have a normal control flow but must also deal with abnormal events.

The hardware has this issue: an I/O event might finish more or less at any instant. Interrupts are like procedure calls that occur “when needed”.

Can Dijkstra’s concept of creating abstractions offer a unified way to deal with abnormal control flow?

Linux offers programmable signal handling mechanisms that mimic interrupts.

C++ offers a similar concept via its throw statement, and the try/catch control structure.

All forms of exceptions can disrupt computation, making it very hard to write a “safe” handler!
PRINTERS APPARENTLY USED TO CATCH FIRE FAIRLY OFTEN!
HIGHLY EXCEPTIONAL CONTROL FLOW

```c
static int lp_check_status(int minor)
{
    int error = 0;
    unsigned int last = lp_table[minor].last_error;
    unsigned char status = r_str(minor);
    if ((status & LP_PERMROP) && !LP_F(minor) & LP_CAREFUL)
        /* No error */
        last = 0;
    else if ((status & LP_POUTPA))
        if (last != LP_POUTPA)
            last = LP_POUTPA;
            printk(KERN_INFO "lpd out of paper\n", minor);
    } else
        error = -ENOSPC;
    else if ((status & LP_PSELLED))
        if (last != LP_PSELLED)
            last = LP_PSELLED;
            printk(KERN_INFO "lpd off-line\n", minor);
    } else
        error = -EIO;
    else if ((status & LP_PERMROP))
        if (last != LP_PERMROP)
            last = LP_PERMROP;
            printk(KERN_INFO "lpd on fire\n", minor);
    } else
        error = -EIO;
    else
        last = 0; /* Come here if LP_CAREFUL is set and no
        errors are reported. */
    } else
    lp_table[minor].last_error = last;
    if (last != 0)
        lp_error(minor);
    return error;
```
TODAY

Exceptional Control Flow

Linux signals

Programming language-level exceptions

C++ features for handling exceptions
CONTROL FLOW

Processors do only one thing:

- From startup to shutdown, a CPU simply reads and executes (interprets) a sequence of instructions, one at a time
- This sequence is the CPU’s control flow (or flow of control)

Physical control flow

```
<startup>
inst_1
inst_2
inst_3
...
inst_n
<shutdown>
```
ALTERING THE CONTROL FLOW

Up to now: two mechanisms for changing control flow:
- Jumps and branches… Call and return
- In effect, we change control flow to react to changes in program state

Insufficient: We also need to react to changes in system state
- Data arrives from a disk or a network adapter
- Instruction divides by zero
- User hits Ctrl-C at the keyboard… Timer expires…
Exceptions: several “flavors” but many commonalities

All exceptions “seize control,” generally by forcing the immediate execution of a handler procedure, no matter what your process was doing.

When a hardware device wants to signal that something needs attention, or has gone wrong, we say that the device triggers an interrupt. Linux generalizes this and views all forms of exceptions as being like interrupts.

Once this occurs, we can “handle” the exception in ways that might hide it, or we may need to stop some task entirely (like with ^C).
An exception can occur in the middle of some sort of expression evaluation, or data structure update.

For example, if your code manages a linked list, the exception could occur in the middle of adding a node!

So… the handler cannot assume that data structures are intact!
HOW WE HANDLE THIS

We think in terms of “recoverable” exceptions and “non-recoverable” ones.

A recoverable exception occurs if the kernel or the program can handle the exception, then resume normal execution.

A non-recoverable exception terminates the task (or perhaps just part of some task).
LETS LOOK FIRST AT MECHANISMS, BUT THEN WE WILL SEE AN ABSTRACTION EMERGE

A mechanistic perspective looks at how each class of event arises. Each form of abnormal control flow has a concrete cause because the hardware features are diverse, we could end up with a diverse set of language features to deal with them.

In practice, there is a surprisingly degree of uniformity representing one abstraction that is applies in various ways
Rather than abstracting storage, the way a file system abstracts the storage blocks on a device, control flow abstractions have a conceptual flavor.

They illustrate a reused design pattern and a way of thinking about abnormal control flow. This concept is universal, yet the embodiment varies.
This design pattern is a Linux feature

An exception often causes a transfer of control to the OS kernel in response to some event (i.e., change in processor state)

- Examples: Divide by 0, arithmetic overflow, page fault, I/O request completes, typing Ctrl-C
Each type of event has a unique exception number k

$k = \text{index into exception table (a.k.a. interrupt vector)}$

Handler k is called each time exception k occurs
EXCEPTION TABLES

The kernel has one for interrupts.

Each process has one for signals.

The entries are simply the addresses of the handler methods. A special exception handler turns the exception into a kind of procedure call, at which the handler runs like normal code.
(PARTIAL) TAXONOMY

- Asynchronous
 - Interrupts
- Synchronous
 - Traps
 - Faults
 - Aborts
ASYNCHRONOUS EXCEPTIONS (INTERRUPTS)

Caused by events external to the processor

- Indicated by setting the processor’s interrupt pin
- Handler returns to the instruction that was about to execute

Examples:

- Timer interrupt
 - Every few ms, an external timer chip triggers an interrupt.
 - Used by the kernel to take back control from user programs

- I/O interrupt from external device
 - Typing a character or hitting Ctrl-C at the keyboard
 - Arrival of a packet from a network, or data from a disk
SYNCHRONOUS EXCEPTIONS

Caused by events that occur as a result of executing an instruction:

- **Traps**
 - Intentional, set program up to “trip the trap” and do something
 - Examples: system calls, gdb breakpoints. Control resumes at “next” instruction

- **Faults**
 - Unintentional but possibly recoverable
 - Examples: page faults (recoverable), protection faults (unrecoverable), floating point exceptions
 - Either re-executes faulting (“current”) instruction or aborts

- **Aborts**
 - Unintentional and unrecoverable… Aborts current program
 - Examples: illegal instruction, parity error, machine check
SYSTEM CALLS

- Each Linux system call has a unique ID number
- Examples:

<table>
<thead>
<tr>
<th>Number</th>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>read</td>
<td>Read file</td>
</tr>
<tr>
<td>1</td>
<td>write</td>
<td>Write file</td>
</tr>
<tr>
<td>2</td>
<td>open</td>
<td>Open file</td>
</tr>
<tr>
<td>3</td>
<td>close</td>
<td>Close file</td>
</tr>
<tr>
<td>4</td>
<td>stat</td>
<td>Get info about file</td>
</tr>
<tr>
<td>57</td>
<td>fork</td>
<td>Create process</td>
</tr>
<tr>
<td>59</td>
<td>execve</td>
<td>Execute a program</td>
</tr>
<tr>
<td>60</td>
<td>_exit</td>
<td>Terminate process</td>
</tr>
<tr>
<td>62</td>
<td>kill</td>
<td>Send signal to process</td>
</tr>
</tbody>
</table>
SYSTEM CALL EXAMPLE: OPENING FILE

User calls: open(filename, options)

Calls __open function, which invokes system call instruction syscall

```
00000000000e5d70 <__open>:
...
e5d79:   b8 02 00 00 00  mov $0x2,%eax  # open is syscall #2
e5d7e:   0f 05               syscall # Return value in %rax
e5d80:   48 3d 01 f0 ff ff cmp $0xfffffffffffff001,%rax
...
e5dfa:   c3                  retq
```

- %rax contains syscall number
- Other arguments in %rdi, %rsi, %rdx, %r10, %r8, %r9
- Return value in %rax
- Negative value is an error corresponding to negative errno
User calls: `open(filename, options)`

Calls `__open` function, which invokes system call instruction `syscall`

00000000000e5d70 <__open>:

- `e5d79: b8 02 00 00 00 mov $0x2,%eax # open is syscall #2`
- `e5d7e: 0f 05 syscall # Return value in %rax`
- `e5d80: 48 3d 01 f0 ff ff cmp $0xfffffffffffff001,%rax`
- `e5dfa: c3 retq`

User code

Kernel code

Almost like a function call
- Transfer of control
- On return, executes next instruction
- Passes arguments using calling convention
- Gets result in `%rax`

One Important exception!
- Executed by Kernel
- Different set of privileges
- And other differences:
 - e.g., “address” of “function” is in `%rax`
 - Uses `errno`
 - Etc.

- `%rax` contains syscall number
- Other arguments in `%rdi, %rsi, %rdx, %r10, %r8, %r9`
- Return value in `%rax`
- Negative value is an error corresponding to negative `errno`
FAULT EXAMPLE: PAGE FAULT

User writes to memory location

That portion (page) of user’s memory is currently paged out (on disk)

```c
int a[1000];
main ()
{
    a[500] = 13;
}
```

80483b7: c7 05 10 9d 04 08 0d movl $0xd,0x8049d10

- **User code**: `movl`
- **Kernel code**: `Exception: page fault` and `Copy page from disk to memory` and `Return and reexecute movl`
FAULT EXAMPLE: INVALID MEMORY REFERENCE

User code

Kernel code

movl

Exception: page fault

Detect invalid address

Signal process

int a[1000];
main ()
{
 a[5000] = 13;
}

Sends SIGSEGV signal to user process
User process exits with "segmentation fault"
SOME FLAVORS OF SEGMENT FAULTS

Trying to read or write into memory that isn’t part of your address space.

Trying to modify a write-protected data or code segment.

Trying to jump into (execute) a data segment (this is actually possible, but you have to do something special).
YET EXCEPTIONS ALSO ALLOW US TO EMULATE “INFINITE NUMBER OF CORES”

Basic idea: if we have more threads than cores, we can use timer exceptions to switch from thread to thread (or process to process).

This is called a “context switch” and involves saving the state of the interrupted thread: the contents of the registers.

Then we can load the state of the thread we wish to switch to.
For the hardware, a process is simply a set of threads plus a memory map that tells which memory pages belong to the process, and what protection rules to apply.

As part of the context switch, the kernel simply tells the hardware which “page table” to use for this process.
TODAY

Exceptional Control Flow
Linux signals
Programming language-level exceptions
C++ features for handling exceptions
Linux uses a variety of signals to “tell” an active process about exceptions relevant to it. The approach mimics what the hardware does for interrupts.

The signal must be caught or ignored. Some signals are ignored by default. Others must be caught and will terminate the process if not.

To catch a signal, a process (or some library it uses) must register a “signal handler” procedure. Linux will pause normal execution and call the handler. When the handler returns, the interrupted logic resumes.
LIST OF LINUX SIGNALS

SIGABRT Abort signal from abort(3)
SIGALRM Timer signal from alarm(2)
SIGBUS Bus error (bad memory access)
SIGCHLD Child stopped or terminated
SIGCONT Continue if stopped
SIGEMT Emulator trap
SIGFPE Floating-point exception
SIGHUP User logged out or controlling process
SIGILL Illegal Instruction
SIGINFO A synonym for SIGPWR
SIGINT Interrupt from keyboard
SIGIO I/O now possible (4.2BSD)
SIGIOT IOT trap. A synonym for SIGABRT
SIGKILL Kill signal (cannot be caught or ignored)
SIGLOST File lock lost (unused)
SIGPIPE Broken pipe: write to pipe with no readers
SIGPOLL Pollable event (Sys V); synonym for SIGIO
SIGPROF Profiling timer expired
SIGPWR Power failure (System V)
SIGQUIT Quit from keyboard
SIGSEGV Invalid memory reference
SIGSTOP Stop process
SIGTSTP Stop typed at terminal
SIGSYS Bad system call (SVr4)
SIGTERM Termination signal
SIGTRAP Trace/breakpoint trap
SIGTTIN Terminal input for background process
SIGTTOU Terminal output for background process
SIGURG Urgent condition on socket (4.2BSD)
SIGUSR1 User-defined signal 1
SIGUSR2 User-defined signal 2
SIGVTALRM Virtual alarm clock (4.2BSD)
SIGXCPU CPU time limit exceeded (4.2BSD)
SIGXFSSZ File size limit exceeded (4.2BSD)
SIGWINCH Window resize signal (4.3BSD, Sun)
GDB – LINUX DEBUGGER

Allows you to understand where an exception occurred.

You can set breakpoints, examine variables, see the call stack

You can even watch individual variables

Uses exception handlers for all of this!
PAUSE FOR A DEMO: LET'S SEE WHAT HAPPENS IF A PROGRAM TRIES TO ACCESS MEMORY INAPPROPRIATELY, AND HOW GDB HELPS US TRACK SUCH AN ISSUE DOWN.
Running

`gdb <program> [core dump]`
Start GDB (with optional core dump).

`gdb --args <program> <args...>`
Start GDB and pass arguments

`gdb --pid <pid>`
Start GDB and attach to process.

`set args <args...>`
Set arguments to pass to program to be debugged.

`run`
Run the program to be debugged.

`kill`
Kill the running program.

Breakpoints

`break <where>`
Set a new breakpoint.

`delete <breakpoint#>`
Remove a breakpoint.

`clear`
Delete all breakpoints.

`enable <breakpoint#>`
Enable a disabled breakpoint.

`disable <breakpoint#>`
Disable a breakpoint.

Watchpoints

`watch <where>`
Set a new watchpoint.

`delete(enable/disable) <watchpoint#>`
Like breakpoints.

Conditions

`break/<where> if <condition>`
Break/watch at the given location if the condition is met.
Conditions may be almost any C expression that evaluate to true or false.

`condition <breakpoint#> <expression>`
Set/change the condition of an existing break- or watchpoint.

Examining the stack

`backtrace`
Show call stack.

`backtrace full`
Show call stack, also print the local variables in each frame.

`frame <frame#>`
Select the stack frame to operate on.

Stepping

`next`
Go to next instruction (source line) but don't dive into functions.

`finish`
Continue until the current function returns.

`continue`
Continue normal execution.

Variables and memory

`print/format <what>`
Print content of variable/memory location/register.

`display/format <what>`
Like `print`, but print the information after each stepping instruction.

`undisplay <display#>`
Remove the `display` with the given number.

`enable display <display#>`
`disable display <display#>`
En- or disable the `display` with the given number.

`x/nfu <address>`
Print memory.

U: How many units to print (default 1).
F: Format character (like `print`).
U: Unit.

Unit is one of:

 b: Byte,
 h: Half-word (two bytes)
 w: Word (four bytes)
g: Giant word (eight bytes).

© 2007 Marc Haisenko <marc@darkdust.net>
Format

<table>
<thead>
<tr>
<th>Character</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>a</code></td>
<td>Pointer.</td>
</tr>
<tr>
<td><code>c</code></td>
<td>Read as integer, print as character.</td>
</tr>
<tr>
<td><code>d</code></td>
<td>Integer, signed decimal.</td>
</tr>
<tr>
<td><code>f</code></td>
<td>Floating point number.</td>
</tr>
<tr>
<td><code>o</code></td>
<td>Integer, print as octal.</td>
</tr>
<tr>
<td><code>s</code></td>
<td>Try to treat as C string.</td>
</tr>
<tr>
<td><code>t</code></td>
<td>Integer, print as binary (<code>t</code> = „two“).</td>
</tr>
<tr>
<td><code>u</code></td>
<td>Integer, unsigned decimal.</td>
</tr>
<tr>
<td><code>x</code></td>
<td>Integer, print as hexadecimal.</td>
</tr>
</tbody>
</table>

expression

Almost any C expression, including function calls (must be prefixed with a cast to tell GDB the return value type).

file_name::variable_name

Content of the variable defined in the named file (static variables).

function::variable_name

Content of the variable defined in the named function (if on the stack).

{type}address

Content at address, interpreted as being of the C type type.

$register

Content of named register. Interesting registers are `$esp` (stack pointer), `$ebp` (frame pointer) and `$eip` (instruction pointer).

Manipulating the program

- **set var** `<variable_name>`=<`value`>

 Change the content of a variable to the given value.

- **return** `<expression>`

 Force the current function to return immediately, passing the given value.

Sources

- **directory** `<directory>`

 Add directory to the list of directories that is searched for sources.

- **list** `<filename>`:<`function`>

 Shows the current or given source context. The `filename` may be omitted. If `last` is omitted the context starting at `start` is printed instead of centered around it.

- **set listsize** `<count>`

 Set how many lines to show in „list“.

Signals

- **handle** `<signal>` <`options`>

 Set how to handle signles. Options are:

 (no)print: (Don’t) print a message when signals occurs.

 (no)stop: (Don’t) stop the program when signals occurs.

 (no)pass: (Don’t) pass the signal to the program.

Informations

- **disassemble** `<where>`

 Disassemble the current function or given location.

- **info args**

 Print the arguments to the function of the current stack frame.

- **info breakpoints**

 Print informations about the break- and watchpoints.

- **info display**

 Print informations about the „displays“.

- **info locals**

 Print the local variables in the currently selected stack frame.

- **info sharedlibrary**

 List loaded shared libraries.

- **info signals**

 List all signals and how they are currently handled.

- **info threads**

 List all threads.

- **show directories**

 Print all directories in which GDB searches for source files.

- **show listsize**

 Print how many are shown in the „list“ command.

- **whatis** `<variable_name>`

 Print type of named variable.
TODAY

Exceptional Control Flow
Linux signals
Programming language-level exceptions
C++ features for handling exceptions
Many programming languages have features to help you manage exceptions.

For Linux signals, this is done purely through library procedures that register that register the desired handler method.

But for program exceptions, a program might halt, or there may be a way to manage the exception and resume execution.

One big difference: Linux can restart a program at the exact instruction and in the exact state it was in prior to an interrupt or signal. But a programming language generally can’t resume the same instruction after an event like a zero divide, so we need a way to transfer control to “alternative logic”
UNHANDLED SEGMENTATION FAULTS

Our program dereferenced a null pointer, causing a segmentation fault. gdb showed us the line and variable responsible for the crash.

Notice the contrast with the cases where Linux was able to handle the fault: page faults and stack faults... in those, the program hadn’t done anything wrong... The instruction that caused the fault can be retried (and will succeed) once the new page is mapped in.

With a segmentation fault, there is no way to “repair” the issue.
WHAT CAN WE DO?

Segmentation faults terminate the process.

But you could “imagine” catching them and just terminating some thread that triggered the fault.

Other kinds of exceptions might be user-designed ones intended to reflect program logic, like “divide by 0” in Bignum
TODAY

Exceptional Control Flow
Linux signals
Programming language-level exceptions
C++ features for handling exceptions
WHAT CAN WE DO IF A FAULT MIGHT OCCUR, BUT CAN BE HANDLED?

Most languages, including C++, offer a way to attempt some action, but then “catch” exceptions that might occur.

As part of these mechanisms the application is given a way to “throw” an exception if the logic detects a problem.
try
{
 do_something...
}
catch (exception-type) // Something went wrong!
{
 handler for exception // “Fix” the issue (or report it)
}
```c++
try {
    salaries[employee] *= 1.05; // Give a raise...
}
catch (EmployeeUnknown) // “Employee unknown”
{
    handler for exception // Print an error msg
}
```
“DO_SOMETHING” WON’T BE RETRIED

When Linux handled a page fault, it restarted the program on the same instruction and in the same state as it had at the fault.

When C++ catches this “not found” error and prints the error message, we just continue with the next line of code.
A COMMON ISSUE THIS CAN RAISE

Suppose that your program was working with a resource such as an open file, or was holding a lock (we’ll discuss locks soon…)

The try/catch can jump to a caller, exiting from one or more code blocks and method calls that were active.

Thus the resource could be left “dangling”, causing memory leaks or open files or other potential problems.
void annual_sip(float standard_raise)
{
 for(auto emp: emp_list)
 {
 try
 {
 give_raise(emp.name, .05);
 }
 catch(EmployeeNotFound)
 {
 cout << “Salary DB is missing an employee!” << endl;
 }
 }
}

void give_raise(char* name, float raise)
{
 FILE *fp = fopen(“Paychecks.dat”);
 salaries[name] *= 1.0 + raise;
 …. write a record in the paychecks file…
 fclose(fp);
}
void annual_sip(float standard_raise)
{
 for(auto emp: emp_list)
 {
 try
 {
 give_raise(emp.name, .05);
 }
 catch(EmployeeNotFound)
 {
 cout << "Salary DB is missing an employee!" << endl;
 }
 }
}

void give_raise(char* name, float raise)
{
 FILE *fp = fopen("Paychecks.dat");
 salaries[name] *= 1.0 + raise;
 write a record in the paychecks file...
 fclose(fp);
}
void annual_sip(float standard_raise)
{
 for(auto emp: emp_list)
 {
 try
 {
 give_raise(emp.name, .05);
 }
 catch(EmployeeNotFound)
 {
 cout << "Salary DB is missing an employee!" << endl;
 }
 }
}

The exception transfers control to the catch block in annual_sip. The stack frame of give_raise is released. But this means that the line that calls fclose will never execute, so we “leak” open files!

void give_raise(char* name, float raise)
{
 FILE *fp = fopen("Paychecks.dat");
 salaries[name] *= 1.0 + raise;
 write a record in the paychecks file...
 fclose(fp);
}
Suppose that your code is adding a node in a linked list. Now the exception handler tries to access that list data structure.

The list might sometimes seem to be broken because not all the pointers will have their correct values!

Any data that your program updates could be seen during the update, rather than just before or after!
NOT EVERY EXCEPTION CAN SAFELY BE CAUGHT!

Some exceptions are “normal”, like file I/O exceptions, or trying to access an entry in a key-value map that isn’t (yet) there.

But you often can’t catch and fix other kinds of exceptions, like the segmentation fault we saw earlier. Damaged data structures often point to hopelessly corrupted state!
ALSO, IN C++ WHEN WE CATCH AN EXCEPTION, WE CAN’T “RESUME”

The kernel can catch a page fault, page in the missing memory, and then restart your code at the exact same spot.

From C++ an exception handler is more like a goto, not like a method call. We can’t just return to where it happened.

So in this sense, language-level exception handling isn’t like kernel-level exception handling
EXCEPTIONS RUN A RISK OF BUGS!

In our file opening example, a program could hit the limit on how many files can be opened.

Memory can leak. The program could crash because of that partially modified linked list.

Locks could be left in a locked state, causing applications to freeze up much later, next time something needs that lock.
In our file opening example, a program could hit the limit on how many files can be opened.

Memory can leak. The program could crash because of that partially modified linked list.

Locks could be left in a locked state, causing applications to freeze up much later, next time something needs that lock.

Bugs like these are exceptionally hard to track down!

You need to anticipate the risk and program in a way that won’t have these issues.
One option is to severely limit what an exception handler can do.

For interrupts and signals this, plus a way to briefly disable exceptions, suffices.

In C++, we can nest exceptions, and sometimes this helps (catch it locally, close the file, then “rethrow” it). But more often, we simply have to plan ahead for the risk.
... THERE IS A RECOMMENDED SOLUTION

For example, consider the FILE object. Cleaning these up after catching an exception is mostly your challenge to think about and address.

One feature C++ does offer, that you can use, is that C++ will run the destructors for any stack objects that have gone out of scope.

This leads to the idea of using objects that “wrap” sensitive resources and will clean up in the destructor method.
EXAMPLE OF A WRAPPER

Think about std::shared_ptr<Foo> fptr;

fptr is “wrapped” by a std::shared_ptr object that keeps a reference count. If we make copies, the counter increments. If the destructor runs, and the count decrements to 0, fptr is deleted.

This pattern is one we can make use of!
COULD WE BUILD A WRAPPER FOR FILE POINTERS?

One idea is to use std::shared_ptr<FILE>.

When this pointer goes out of scope, the std::shared_ptr<FILE> object destructor would automatically delete the FILE object.

Unfortunately, the FILE destructor won’t automatically close the file if it was left open. (This seems like a design mistake!)
COULD WE IMPLEMENT OUR OWN WRAPPER?

Easily! It just requires a few lines of code.

Your wrapper would be just like std::shared_ptr<FILE>, but tracks whether file is open; if so, the destructor calls fclose()

You can do this for many kinds of resources. C++ has a built-in one that handles locks.
Up to now we have been somewhat mechanistic.

Yet it is interesting to realize that the abstraction of abnormal control flow has a somewhat uniform appearance in all cases.

This type of abstraction doesn’t correspond to a single C++ or Linux feature, yet the *uniformity* of the mechanisms helps the systems programmer reason about them!
WHAT IS THIS ABSTRACTION?

It has steps:

1. Something unusual occurs.

2. This causes an abnormal control flow.
 a. Such a flow could harm normal resource management
 b. Wrappers allow us to tie the resource management question to exiting code blocks in a “uniform” manner.

3. Where relevant, restore state and resume so that the developer won’t be aware that an exception occurred.
The exception pattern is very widely seen in Linux and C++. Broadly, exception handling mimics hardware interrupts. But hardware interrupts and signals can be “inhibited”.

C++ try/catch control flow can’t be inhibited and can easily disrupt updates and resource management: a potential source of serious bugs.

Per-resource wrappers offer an elegant solution.