
CS 4414: Recitation 8
Sagar Jha

Today: Multithreading Part I and template SST
case-study
Multithreading

• std::thread class

• impact of race conditions

• cheap synchronization with std::atomic

• general synchronization with std::mutex

• revisiting wc++

Using templates: A case-study

• SST table design

• Dynamic memory layout with runtime-fixed length column-arrays

• Templated column design

• Figuring out column base addresses and row length using variadic templates

Multithreading

• Threads give us parallelism

• Threads need to coordinate – think of a group discussion

• A single thread starts execution from main

• Can spawn a thread by creating an object of std::thread

• When using multiple threads, link your program against the dynamic
library pthread on Linux

C++ thread support library: std::thread class

Constructors

• template< class Function, class... Args >
explicit thread(Function&& f, Args&&... args);

• thread() noexcept;

Important member functions

• void join();

• void detach();

Using std::thread: My word count example

What can go wrong without synchronization?

Example: Concurrent increments of a shared integer variable

Each thread

• shares an integer called count initialized to 0

• increments it 1 million times concurrently without any
synchronization (no optimizations)

What can go wrong without synchronization?

Example: Concurrent increments of a shared integer variable

Each thread

• shares an integer called count initialized to 0

• increments it 1 million times concurrently without any
synchronization (no optimizations)

Number of threads Final value

1 1000000

2 1059696

3 1155035

4 1369165

What can go wrong without synchronization?

• Accessing more complex data structures concurrently will most likely
result in segmentation fault

• C++ standard library containers (vector, map, list…) are not thread
safe (Why?)

• Example: Concurrent vector updates crash the program

Cheap synchronization with std::atomic<>

• Only available for select data-types: int, bool, float and their variants

• Guarantees atomic access to the variable and atomicity of certain
operations in the presence of multiple threads

• Important functions
(https://en.cppreference.com/w/cpp/atomic/atomic):
• store: atomically replaces the value with a non-atomic argument

• load: atomically obtains the value of the atomic object

• exchange: atomically replaces the value with the provided value and returns
the old value

• operators: += (fetch_add), -= (fetch_sub), ++, --, &=, |=, ^=

https://en.cppreference.com/w/cpp/atomic/atomic

Cheap synchronization with std::atomic<>

• Not all architectures provide atomic loads and stores of integer variables –
even then other operations will not be atomic (increment etc.)

• Demo on https://godbolt.org
• Different assembly code generated for ARM64 gcc 6.3.0 (linux) and x86-64 gcc 10.2

• Uses intel’s lock signal prefix on x86-64

• Uses instructions such as ldaxr (load-acquire exclusive register) and stlxr
(store-release exclusive register) on ARM

• For more about atomics in ARM, read
https://stackoverflow.com/questions/11894059/atomic-operations-in-arm

https://godbolt.org/
https://stackoverflow.com/questions/11894059/atomic-operations-in-arm

Sequential consistency with std::atomic<>

• x = x + 7; is not an atomic operation even if x is an atomic integer, but x +=
7; is!

• std::atomic<> guarantees sequential consistency (total global ordering)
between all atomic operations

• You can relax the synchronization guarantees with std::memory_order
(https://en.cppreference.com/w/cpp/atomic/memory_order)

• For example,
std::atomic<long> value {0};

value.fetch_add(1, std::memory_order_relaxed);

value.fetch_add(5, std::memory_order_release);

• For more info, read https://stackoverflow.com/questions/31978324/what-
exactly-is-stdatomic

https://en.cppreference.com/w/cpp/atomic/memory_order
https://stackoverflow.com/questions/31978324/what-exactly-is-stdatomic

Is std::atomic<> enough for all
synchronization requirements?

Is std::atomic<> enough for all
synchronization requirements?
NO

• Only few primitive types can be atomic

• std::atomic<> applies to just one variable

Example:

• Two integers account1 and account2

• Function transfer: account1 += bal; account2 -= bal;

• Function audit: account1 + account2

Critical section and mutual exclusion

• Instead of thinking about which variables or operations should be
atomic, protect areas of code where they are accessed

• Critical section: A segment of the code that only one thread can
access at a time

• We want mutual exclusion – No two threads access a critical section
at the same time

• In C++, we guarantee mutual exclusion using an std::mutex object

Some important concurrency concepts

• Race condition: When two threads access a critical section at the
same time

• Deadlock: When no thread can make any progress

• Livelock: Threads seem to make progress (release/acquire mutexes),
but are actually still stuck

• Read
• https://stackoverflow.com/questions/34510/what-is-a-race-condition

• https://stackoverflow.com/questions/34512/what-is-a-deadlock

• https://stackoverflow.com/questions/6155951/whats-the-difference-
between-deadlock-and-livelock

https://stackoverflow.com/questions/34510/what-is-a-race-condition
https://stackoverflow.com/questions/34512/what-is-a-deadlock
https://stackoverflow.com/questions/6155951/whats-the-difference-between-deadlock-and-livelock

Synchronization in C++: std::mutex class

• void lock(); – Locks the mutex if it’s available, blocks otherwise

• void unlock(); – Unlocks the mutex if locked by the current thread,
otherwise undefined behavior

• bool try_lock(); – Non-blocking version of lock, returns false if the
mutex is already locked

How to use an std::mutex

• Avoid locking and unlocking directly
• What if you forget to unlock?

• What if the thread throws an exception while holding the mutex?

• Same issues as with releasing memory held by pointers

• Use std::unique_lock<std::mutex> or std::scoped_lock<std::mutex>
• RAII implementations – guaranteed to release the mutex at destruction

• Use std::scoped_lock if you never need to release the mutex manually

• Can you answer now: Why are C++ standard containers not thread-
safe?

Revisiting my word-count program wc++

• Class wordCounter. Public functions:
• wordCounter(const std::string& dir, uint32_t num_threads);

• void compute();

• void display();

• main thread simply initializes an object of wordCounter and calls
compute and display on it

wc::wordCounter word_counter(argv[1], std::stoi(argv[2]));
word_counter.compute();
word_counter.display();

Implementation of wordCounter::compute

• Calls helper function find_all_files(dir, pred) to gather all .c and .h file paths

• Spawns the worker threads and waits for all of them to finish

• Each worker executes the sweep function

• Worker threads use an std::atomic<uint64_t> variable to get a unique file index

uint64_t file_index;
while((file_index = global_index++) < files_to_sweep.size()) {

process_file(files_to_sweep[file_index], local_freq);
}

• Each thread stores the result in a local map, updates the global map at the end
using a mutex

std::lock_guard<std::mutex> lock(wc_mtx);
for(auto [word, cnt] : local_freq) {

freq[word] += cnt;

Next time: Exploring various trade-offs in wc++

• How much time is spent in various stages (collecting all the files,
computing in parallel, sorting results at the end, printing the results)?

• What is the impact on performance with increasing no. of threads?

• What happens if everyone directly modifies global_freq instead of
maintaining a local_freq object?

• What if we use a mutex for finding the next file to process instead of
an std::atomic<uint64_t>?

• What is the overhead of parsing the files word-by-word instead of all
at once?

• What if we divide the files equally among the workers at the start?

Part II: SST – A case-study of using templates

• Important data structure used in our distributed systems research

• SST (Shared State Table) is a table (think: a database table) consisting
of state variables as the columns and multiple rows

SST History

• Conceptualized by Ken for use in RDMA environments

• Version 1 implemented by me in Fall 2015

• Version 2 designed by Matthew Milano in 2017

• Version 2 implemented in 2017 and maintained by me since then

Aside:

• SQL is not type-safe

• What if the column name in the search query is invalid?

Basic requirements

• The user should be able to specify the table layout
• Each row’s data should be stored contiguously in memory

First design:
• User defines the row layout as a struct, myRow

class myRow {
int id;
bool processing;
int msgs_count;

};

• SST is then templated on myRow, contains a vector of myRow objects
• Access row 3’s msgs_count with sst_obj[3].msgs_count

Main requirement 1: Support column vectors
with fixed runtime size
• For example, a column vector called suspected consisting of 3

columns, suspected[0], suspected[1] and suspected[2]

• Can’t use native array members in myRow
class myRow {
int id;
bool processing;
bool suspected[max_size];
int msgs_count;

};

• max_size must be known at compile time, which is a limitation

• Using a vector of bool in myRow will not store the data contiguously

New design: Allocate memory for the rows at
runtime
• When a table entry is accessed using [], do memory translations to find

where the entry is stored
• Store all rows contiguously (number of rows fixed after construction)
• Two new classes: SSTField<T> and SSTFieldVector<T>
• Both derive from the common class _SSTField

• Access table.id[0] at address 0, table.id[1] at address row_length
• Access table.s[1][1] at address 4 + 1 * 4 + 1 * row_length

id, base_address = 0 s[0],
addr=4

s[1],
addr=8

s[2],
addr=12

status,
base_address = 16

User interface

• User defined a mySST class that inherits
from the common SST class

• Specifies columns as a sequence of
SSTField<T> and SSTFieldVector<T>
objects

• Supplies the size of SSTFieldVector<T>
objects in the constructor

Implementation of _SSTField

• Contains the base address of the
column

• Contains the length of the field

Implementation of SSTField<T>

• Models a single column

• Passed the size of T to _SSTField

Implementation of SSTField<T>

• Models a vector of columns

• Passed the number of columns * size of
T to _SSTField

Issue: How to find base address and row length?

• The base address of a field depends on the number of fields to its left

• The length of the row depends on the table layout, thus requires
knowledge of all the columns

Solution: Use variadic templates!

• Leave out setting base addresses when the SST fields are constructed

• Ask the user to call a function SST::initialize_fields passing all the columns
in the constructor of mySST. E.g. initialize_fields(seq_num, vid, suspected,
num_changes).

• Compute and set the row length and base addresses in this function using
variadic templates

Implementation of SST::initialize_fields<T…>

Impl. of SST::compute_row_length<T…>

Impl. of SST::set_field_params<T…>

Now all accesses are well-defined

• User can write
MySST sst(
num_rows,
seq_num_size,
suspected_size);

• And access the fields with
sst.vid[0] or
sst.suspected[2][3]

