CS 4414:; Recitation &

Sagar Jha

Today: Multithreading Part | and template SST
case-study

Multithreading

 std::thread class

impact of race conditions

cheap synchronization with std::atomic
general synchronization with std::mutex
revisiting wc++

Using templates: A case-study

e SST table design

* Dynamic memory layout with runtime-fixed length column-arrays

* Templated column design

* Figuring out column base addresses and row length using variadic templates

Multithreading

* Threads give us parallelism

* Threads need to coordinate — think of a group discussion
* A single thread starts execution from main

* Can spawn a thread by creating an object of std::thread

* When using multiple threads, link your program against the dynamic
library pthread on Linux

C++ thread support library: std::thread class

Constructors

* template< class Function, class... Args >
explicit thread(Function&& f, Args&&... args);

 thread() noexcept;

Important member functions
e void join();
* void detach();

Using std::thread: My word count example

/] start all threads and wait for them to finish
std::vector<std::thread> workers;

for(uint32_t 1 = 0; 1 < num_threads; ++1) {
|/ each thread executes sweep which takes no arguments
workers.push_back(std::thread(sweep));

}

[/ waits for each thread to finish

for(auto& worker : workers) {
worker.join();

}

What can go wrong without synchronization?

Example: Concurrent increments of a shared integer variable
Each thread
* shares an integer called count initialized to O

* increments it 1 million times concurrently without any
synchronization (no optimizations)

What can go wrong without synchronization?

Example: Concurrent increments of a shared integer variable
Each thread
* shares an integer called count initialized to O

* increments it 1 million times concurrently without any
synchronization (no optimizations)

1 1000000
2 1059696
3 1155035
4 1369165

What can go wrong without synchronization?

* Accessing more complex data structures concurrently will most likely
result in segmentation fault

* C++ standard library containers (vector, map, list...) are not thread
safe (Why?)

* Example: Concurrent vector updates crash the program

Cheap synchronization with std::atomic<>

* Only available for select data-types: int, bool, float and their variants

* Guarantees atomic access to the variable and atomicity of certain
operations in the presence of multiple threads

* Important functions
(https://en.cppreference.com/w/cpp/atomic/atomic):
* store: atomically replaces the value with a non-atomic argument
* load: atomically obtains the value of the atomic object

* exchange: atomically replaces the value with the provided value and returns
the old value

* operators: += (fetch_add), -= (fetch_sub), ++, --, &=, |=, =

https://en.cppreference.com/w/cpp/atomic/atomic

Cheap synchronization with std::atomic<>

* Not all architectures provide atomic loads and stores of integer variables —
even then other operations will not be atomic (increment etc.)

 Demo on https://godbolt.org
» Different assembly code generated for ARM64 gcc 6.3.0 (linux) and x86-64 gcc 10.2

e Uses intel’s lock signal prefix on x86-64

* Uses instructions such as |daxr (load-acquire exclusive register) and stixr
(store-release exclusive register) on ARM

* For more about atomics in ARM, read
https://stackoverflow.com/questions/11894059/atomic-operations-in-arm

https://godbolt.org/
https://stackoverflow.com/questions/11894059/atomic-operations-in-arm

Sequential consistency with std::atomic<>

* X =X+ 7; is not an atomic operation even if x is an atomic integer, but x +=
7;is!

* std::atomic<> guarantees sequential consistency (total global ordering)
between all atomic operations

* You can relax the synchronization guarantees with std::memory_order
(https://en.cppreference.com/w/cpp/atomic/memory order)
* For example,
std::atomic<long> value {0};
value.fetch_add(1, std::memory_order_relaxed);
value.fetch_add(5, std::memory_order_release);

* For more info, read https://stackoverflow.com/questions/31978324/what-
exactly-is-stdatomic

https://en.cppreference.com/w/cpp/atomic/memory_order
https://stackoverflow.com/questions/31978324/what-exactly-is-stdatomic

s std::atomic<> enough for all
synchronization requirements?

s std::atomic<> enough for all
synchronization requirements?

NO
* Only few primitive types can be atomic
e std::atomic<> applies to just one variable

Example:

* Two integers accountl and account2

e Function transfer: accountl += bal; account2 -= bal;
* Function audit: accountl + account2

Critical section and mutual exclusion

* Instead of thinking about which variables or operations should be
atomic, protect areas of code where they are accessed

* Critical section: A segment of the code that only one thread can
access at a time

e We want mutual exclusion — No two threads access a critical section
at the same time

* In C++, we guarantee mutual exclusion using an std::mutex object

Some important concurrency concepts

 Race condition: When two threads access a critical section at the
same time

* Deadlock: When no thread can make any progress

* Livelock: Threads seem to make progress (release/acquire mutexes),
but are actually still stuck

 Read

* https://stackoverflow.com/questions/34510/what-is-a-race-condition
* https://stackoverflow.com/questions/34512/what-is-a-deadlock

* https://stackoverflow.com/questions/6155951/whats-the-difference-
between-deadlock-and-livelock

https://stackoverflow.com/questions/34510/what-is-a-race-condition
https://stackoverflow.com/questions/34512/what-is-a-deadlock
https://stackoverflow.com/questions/6155951/whats-the-difference-between-deadlock-and-livelock

Synchronization in C++: std::mutex class

* void lock(); — Locks the mutex if it’s available, blocks otherwise

e void unlock(); — Unlocks the mutex if locked by the current thread,
otherwise undefined behavior

* bool try_lock(); — Non-blocking version of lock, returns false if the
mutex is already locked

How to use an std::mutex

* Avoid locking and unlocking directly
* What if you forget to unlock?
* What if the thread throws an exception while holding the mutex?
* Same issues as with releasing memory held by pointers

e Use std::unique_lock<std::mutex> or std::scoped lock<std::mutex>
* RAll implementations — guaranteed to release the mutex at destruction
» Use std::scoped_lock if you never need to release the mutex manually

e Can you answer now: Why are C++ standard containers not thread-
safe?

Revisiting my word-count program wc++

 Class wordCounter. Public functions:
* wordCounter(const std::string& dir, uint32_t num_threads);
* void compute();
 void display();

* main thread simply initializes an object of wordCounter and calls
compute and display on it
wc::wordCounter word_counter(argv[1], std::stoi(argv([2]));

word_counter.compute();
word_counter.display();

Implementation of wordCounter::compute

Calls helper function find _all files(dir, pred) to gather all .c and .h file paths
Spawns the worker threads and waits for all of them to finish

Each worker executes the sweep function

Worker threads use an std::atomic<uint64_t> variable to get a unique file index

uint64 t file_index;
while((file_index = global_index++) < files_to_sweep.size()) {
process_file(files to_sweep|file _index], local freq);

}

Each thread stores the result in a local map, updates the global map at the end
using a mutex

std::lock guard<std::mutex> lock(wc_mtx);
for(auto [word, cnt] : local_freq) {
freq[word] += cnt;

Next time: Exploring various trade-offs in wc++

* How much time is spent in various stages (collecting all the files,
computing in parallel, sorting results at the end, printing the results)?

 What is the impact on performance with increasing no. of threads?

* What happens if everyone directly modifies global freq instead of
maintaining a local_freq object?

* What if we use a mutex for finding the next file to process instead of
an std::atomic<uint64_t>?

* What is the overhead of parsing the files word-by-word instead of all
at once?

 What if we divide the files equally among the workers at the start?

Part II: SST — A case-study of using templates

* Important data structure used in our distributed systems research

e SST (Shared State Table) is a table (think: a database table) consisting
of state variables as the columns and multiple rows

Suspected Proposal nCommit Acked nReceived Wedged
Suspected Proposal nCommit Acked nReceived Wedged
Suspected Proposal nCommit Acked nReceived Wedged
Q R P Q R
T F 4: -Q 3 4 5 3 0 T
F F 3 3 3 4 4 0 F
F F 3 3 3 5 4 0 F

SST History

* Conceptualized by Ken for use in RDMA environments

* Version 1 implemented by me in Fall 2015

* Version 2 designed by Matthew Milano in 2017

* Version 2 implemented in 2017 and maintained by me since then

Aside:
* SQL is not type-safe
 What if the column name in the search query is invalid?

Basic requirements

* The user should be able to specify the table layout
e Each row’s data should be stored contiguously in memory

First design:

* User defines the row layout as a struct, myRow
class myRow {
intid;
bool processing;
int msgs_count;

Iy
e SST is then templated on myRow, contains a vector of myRow objects
e Access row 3’s msgs_count with sst_obj[3].msgs count

Main requirement 1: Support column vectors
with fixed runtime size

* For example, a column vector called suspected consisting of 3
columns, suspected[0], suspected[1] and suspected[2]

e Can’t use native array members in myRow
class myRow {
intid;
bool processing;
bool suspected[max_size];
Int msgs_count;

5
* max_size must be known at compile time, which is a limitation
* Using a vector of bool in myRow will not store the data contiguously

New design: Allocate memory for the rows at
runtime

* When a table entry is accessed using [], do memory translations to find
where the entry is stored

 Store all rows contiguously (number of rows fixed after construction)
 Two new classes: SSTField<T> and SSTFieldVector<T>
* Both derive from the common class SSTField

id, base_address = 0 s[0], s[1], s[2], status,
addr=4 | addr=8 | addr=12 | base_address = 16

* Access table.id[0] at address O, table.id[1] at address row_length
e Access table.s[1][1] at address4 +1 * 4 + 1 * row_length

User interface

class mySST : public SST {
SSTFieldVector<message_id_t> seq_num;

* User defined a mySST class that inherits SSTField<int32_t> vid;
SSTFieldVector<bool> suspected;

from the common SST class SSTField<int> num_changes;

» Specifies columns as a sequence of

SSTField<T> and SSTFieldVector<T> public: .
biects mySST(const U}nt32_t num_rows,.
objec const ulnt32_t seq_num_s1ize,
* Supplies the size of SSTFieldVector<T> CG(\S';S#’EE?]ZF;WE;Spected_SHE)
objects in the constructor seq num(seq num size),

suspected(suspected size) {

Implementation of SSTField

class _SSTField {
public:
volatile char* base;
size_t row_length;
* Contains the base address of the size_t field_length;
column uint32_t num_rows;

* Contains the length of the field _SSTField(const size_t field_length);

const char* get_base_address();

Implementation of SSTField<T>

template <typename T>
class SSTField : public _SSTField {
public:
using _SSTField: :base;
using _SSTField::field_length;
using _SSTField::row_length;

 Models a single column
* Passed the size of Tto _SSTField

SSTField() : _SSTField(sizeof(T)) {
}

/[Tracks down the appropriate row
volatile T& operator[](const size_t row_index) const;

Implementation of SSTField<T>

template <typename T>
class SSTFieldVector : public _SSTField {
private:

const size_t _size;

public:
using _SSTField: :base;
using _SSTField::field_length;
using _SSTField::row_Llength;
 Models a vector of columns , , ,
SSTFieldVector(size_t _size)

° * i : SSTField(_size * sizeof(T)),
Passed thg number of columns * size of “eize(size) {
T to SSTField }

// Tracks down the appropriate row
volatile T* operator[](const size_t& row_index) const;

[** Just like std::vector::size(), returns the number of
elements in this vector. */

size_t size() const;
};

Issue: How to find base address and row length?

* The base address of a field depends on the number of fields to its left

* The length of the row depends on the table layout, thus requires
knowledge of all the columns

Solution: Use variadic templates!
* Leave out setting base addresses when the SST fields are constructed

e Ask the user to call a function SST::initialize _fields passing all the columns
in the constructor of mySST. E.g. initialize fields(seq num, vid, suspected,

num_changes).

 Compute and set the row length and base addresses in this function using
variadic templates

Implementation of SST::initialize fields<T...>

template <typename... Fields>
void SST::initialize_fields(Fields&... fields) {
compute_row_length(fields...);
rows = std::make unique<volatile char[]>(row_length *
members.num_nodes);
volatile char* base = rows.get();
set field params(base, fields...);

Impl. of SST::compute row length<T...>

template <typename DerivedSST>
void SST<DerivedSST>::compute_row_Llength(){};

template <typename DerivedSST>
template <typename Field, typename... Fields>

void SST<DerivedSST>::compute_row_length(Field& f, Fields&...

rest) {
row length += padded length(f.field length);
compute_row_length(rest...);

Impl. of SST::set field params<T...>

template <typename DerivedSST>
void SST<DerivedSST>::set_field_params(volatile char*&){};

template <typename DerivedSST>
template <typename Field, typename... Fields>
void SST<DerivedSST>::set_field_params(volatile char*& base,
Field& f, Fields&... rest) {
base += f.set base(base);
f.set row length(row length);
f.set _num _rows(members.num nodes);
set field params(base, rest...);

Now all accesses are well-defined

template <typename T>
volatile T& SSTField<T>::operator[](
const size_t row_index) const {
e User can write return ((T&)base[row _index * row length]);

MySST sst(}
num_rows,
seq_num_size,
suspected_size);

template <typename T>

* And access the fields with volatile T* SSTFieldVector<T>::operator[](
sst.vid[0] or const size_t& row_index) const {
sst.suspected[2][3] return (T*)(base + row_index * row_length);

