
CS 4414: Recitation 7
Sagar Jha



Today: Templates and Sokoban Part II

1. Templates (Presentation of Chapter 6 of A Tour of C++)
• Parameterized Types : Vector<T> implementation, value template arguments, 

template argument deduction

• Parameterized Operations: function templates, function objects, lambda 
expressions

• Template mechanisms: variable templates, aliases, compile-time if

2. Sokoban Part II
• Review the C++-17 implementation and code structure

• Study the effects of filtering dead states on performance

• Debug errors I fixed during the implementation using gdb



Templates: Introduction

• A class or function that we parameterize with a set of types or values

• Used to express general ideas independent of the types involved

• Templates plus the template arguments specify the complete
class/function (template instantiation or specialization)

• Compiler generates proper classes or functions from their template 
specifications – thus, templates don’t have any runtime overheads

• e.g. From a definition of vector<T>, the user can create objects of
both vector<int> and vector<double>. The compiler will generate 
code for vector<int> and vector<double> separately replacing T by int 
and double.



Parameterized Types: class Vector<T>



Parameterized Types: class Vector<T>

• Defining objects of type Vector<T>

• Using a Vector<string> object



Parameterized Types: class Vector<T>
• Implementation of member functions



Parameterized Types: class Vector<T>

• Implementation of begin and end for iteration



Value Template Arguments

• A template can take value arguments, in addition to type arguments

• From STL, we have std::array<T, N> where N is the size of the array

• e.g. Buffer<T, N>



Template Argument Deduction

• auto p = make_pair(1, 5.2); or pair p = {1, 5. 2}; – Compiler will 
deduce the type of p to be pair<int, double>



Function Templates – Generic sum function

• Functions can also be templated

• The algorithm’s library function std::accumulate() provides a general 
version of sum



Function Templates – Generic sum function



Function objects (or functor)

• In C++, you can overload operator() as Ret operator()(Args… args);



Function objects (or functor)



Using function objects as predicates



Lambda Expressions

• Notation for implicitly generating function objects



Lambda Expressions : for_all function



Template Mechanisms

• Variables can also be templated



Template Mechanisms
• Aliases allow us to use types related to template arguments



Template Mechanisms

• Aliasing can be used to bind some or all template arguments



Template Mechanisms

• Not all code can be general

• Compile-Time if combined with type traits can help



Why can templates only be implemented in 
the header file?
• NOT TRUE, but often necessary

• Write the implementations in an associated .hpp file 
(my_template_library_impl.hpp), then include this file at the end of 
the header file (my_template_library.hpp)

• If you know the template instantiations beforehand, alternatively 
declare them in the .cpp file (my_template_library.cpp)

• Read https://stackoverflow.com/questions/495021/why-can-
templates-only-be-implemented-in-the-header-file

https://stackoverflow.com/questions/495021/why-can-templates-only-be-implemented-in-the-header-file


Part II : Sokoban Part II

Recap:

• Learned to play the game of Sokoban

• Reviewed versions 1, 2, 3, 4 of Sokoban solver

• Learned the trade-offs between DFS & BFS for game tree exploration

• Main optimization idea: Exploration on box moves, not player moves

• Surveyed the 15 test cases to gain an understanding of solving them 
computationally

• Fixed bug in high memory usage: allocating objects using new is an
invitation to leaking memory

• v3_opt performs best time-wise and uses the least amount of memory



Sokoban Part II

Issues:

• The best solution still takes about 90 seconds for solving level 10

• Tracing moves made while exploring state is inefficient

• Time to solve and memory usage is directly proportional to the number of states
explored before finding a solution. Need to reduce this number to optimize both

Today:

• A modern implementation using C++-17 (including compiling and linking)

• Improved tracing and class design

• Filtering dead states to optimize search time and memory usage

• Reachability analysis for finding all box moves

• Using gdb to catch and fix bugs



Code organization and building

• Files
• ./main.cpp: Includes code to input a sokoban puzzle and output the solution
• ./sokoban/sokoban.hpp: Declares classes sokoban_solver, sokoban_state and 

sokoban_board
• ./sokoban/sokoban.cpp: Defines member functions of classes in sokoban.hpp

• Building/compiling
• Using CMake – CMakeLists.txt in both ./ and ./sokoban
• Different build types Release and Debug with different g++ options
• sokoban.hpp and sokoban.cpp are compiled to the library

libsokoban_solver.so
• main.cpp is linked to libsokoban_solver.so to generate the binary sokoban



Class Design

• class sokoban_solver implements BFS to find a solution

• class sokoban_state stores an intermediate state or configuration

• sokoban_state finds all moves that can be made from an instance

• Observation: Every sokoban state that is explored contains the same 
board texture – Empty spaces and Walls

• Idea: Refactor the board texture and use the same instance across all
states explored from a given puzzle

• Approach: Carefully navigate the ownership of the shared board 
texture object



Internals

• Board texture
• Flattened 1D-array for efficiency

• Tracing
• Each state stores a vector of moves made to reach that state

• Reachability analysis (to compute all one box moves)
• Mark the player position as reachable, box positions as unreachable
• Expand the reachable positions iteratively by trying to move down, up, right 

or left from reachable positions
• A box can be moved down, if the square above it is reachable and the square 

below it is an empty square (or floor). Similarly, for up, right and left.
• Iterate through all boxes to find all the moves



Main optimization for both runtime and 
memory usage : Filtering dead states
• Sometimes, it is possible to examine a state and tell that a solution 

can never be reached from there

• Immovable box: If a box cannot be moved either down/up/right/left 
and it’s not already on a target square, no solution is possible

• Boxes along an edge: If more boxes than targets exist along an edge, 
no solution is possible

• Stacked boxes: Boxes next to each other can block each other
resulting in dead states



Aside: Bash script for evaluation and latex 
files for plotting



Immovable box filter gives up to 150X time 
improvement and uses up to 15X less memory!

Time to solve vs level Memory usage vs level



Immovable box filter gives up to 150X time 
improvement and uses up to 15X less memory!

Improvement factor for modern code over v3_opt



Debugging sokoban with gdb

• Faulty shadowing: I often name local variables same as class variables
• Bug cause: An object can be passed to its own constructor!

• See https://stackoverflow.com/questions/32608458/is-passing-a-c-object-
into-its-own-constructor-legal

• Bug in reachability: Forgot to check the board texture

• High memory usage: Permutations of box positions are equivalent

• Tracing bug: After permutations are made equivalent, tracing 
becomes faulty

https://stackoverflow.com/questions/32608458/is-passing-a-c-object-into-its-own-constructor-legal


Exercise for the more interested

• Extend my solution using templates to write a general one-player 
game solver


