CS 4414: Recitation 5

Sagar Jha



Today’s agenda

Compiler optimizations (BO Chapter 5)
 What is the goal of optimization?
* Tricky questions

* Compilation techniques: Code motion, Out-of-order execution, Data flow
analysis, Loop unrolling, Inline expansion

* g++ optimization options

* C++ specific optimizations

Iterators and Algorithm (BS Chapter 12)
 What are iterators? How to use them?
* Type of iterators

* Overview of algorithms



What is the goal of optimization?



What is the goal of optimization?

* Improve program performance without changing its behavior

e C++ compilers must follow the as-if-rule: All optimizing
transformations are allowed as long as they do not change the
“observable behavior” of the program

* Notable exceptions:
* Undefined behavior
e Copy elision
e Return value optimization



Tricky question 1
* Are the following programs equivalent?

void twiddle (long *xp, long *vyp) {
*Xp += *yp;
*Xp t+= *yp;

}

void twiddle (long *xp, long *yp) {
*Xp +t= 2 % *yp;
}



Tricky question 2

* Are the following programs equivalent?

long £();

long funcl () {
return £() + £() + £() + £();

}

long func2 () {
return 4*f () ;

}



Loop-invariant code motion

length (my vector v);

for (int i = 0; 1 < length(v); ++1) {
// access v[i]

}

int len = length (v):;
for (int i = 0; 1 < len; ++1) {
// access vI[i]

}



Loop-invariant code motion

void lowerl (char *s) {
for (int 1 = 0; 1 < std::strlen(s); ++1i) {

if (s[i] >= 'A' && s[i] <= 'Z') |
s[i] -= ("A' - 'a');
}

}
}

void lower2 (char *s) {
long len = strlen(s);
for (int i = 0; 1 < len; ++i) {
if (s[i] >= '"A' && s[i1] <= 'Z') {
s[i] -= ("A' - 'a');
}
}
}



Out-of-order execution

* Modern processors can execute multiple instructions in parallel

* The degree of parallelism depends on how independent individual
Instructions are

* Reorder instructions based on availability of input data and execution
unit
* A form of data-flow analysis/computation



Data flow analysis

 Compute possible values of variables at different points in the
program during compilation

if (some bool) {

X = 1;
} else {
X = 3;

}

if (x < 10) {
// do something
}



Loop unrolling

* Reduces the number of iterations for a loop

int prod = 1;

for (int 1 = 0; i1 < length; i++) {
prod *= datali];

}

int prod = 1;
for (int 1 =

prod *= dat
}

// one more step if data has odd number of elements...

1 < length; i+=2) {

0;
al[i] * data*[i+1];



Loop unrolling
e Using multiple accumulators can improve performance

for (int = 0; 1 < length; 1i+=2) {
prod even *= datalil];
prod odd *= datal[i+1];

}



Function inlining and consts

* Inline expansion, by placing a copy of the function at call site, can
remove function-calling overheads

e C++ offers the inline keyword to suggest inlining to the compiler, in
most cases, you don’t need to manually specify it

* Const, likewise, is for improving program readability and correctness

* Compilers can often figure out const-related optimizations by
themselves



Branch prediction

* Branches (if-else conditions, loops) interfere with instruction
pipelining

* Branch prediction tries to prefetch instructions by betting on the
result of the condition, backtracking if needed

* Most upvoted stackoverflow question:
https://stackoverflow.com/questions/11227809/why-is-processing-a-
sorted-array-faster-than-processing-an-unsorted-array
Performance of processing a sorted array is almost six times faster
Summary: predicting data[c] > 128 in the user’s code is almost always
successful with a sorted array



https://stackoverflow.com/questions/11227809/why-is-processing-a-sorted-array-faster-than-processing-an-unsorted-array

Aggressive optimization can potentially
reduce performance!

e Aggressive inlining and loop unrolling can increase code size
 Larger instruction size reduces the performance of the instruction cache

e g++ optimization levels:
e -00: default, no optimizations — useful for debugging

e -O1: core optimizations (function inlining, tail recursion, not calling functions with no
side-effects, reusing stack space of variables no longer used) — decent debugging
experience

e -0O2: more aggressive inlining and loop unrolling, vector instructions for simple loops
and independent operations — industry standard

* -03: even more aggressive inlining and unrolling — impossible to debug
e -Oz: smallest possible code size, useful when executing on microprocessors



Live demo on https://godbolt.org



Other C++-specific optimizations

* RAIl for predictable performance (and not garbage collection)

* Garbage collection (in Java etc.) may be potentially inefficient:

* Unpredictable performance: The program may be paused for garbage collection to
run, if the program is running out of memory

 Heavy RAM usage: program uses more memory because objects are not cleaned up
right when they go out of scope

* Memory leaks possible in some cases

. Sﬁalal?jility: Garbage collection performance may be worse with small number of
threads

* Copy elision: Eliminate unnecessary copying of objects. E.g. not copying a
temporary class object into another object

e Return value optimization (RVO): Eliminate temporary object holding a function’s
return value



RVO can change program behavior!

#include <iostream>

struct C {

C() = default;

C(const C&) { std::cout << "A copy was made.\n"; }
1

Cf0O{

return C();

}

int main() {
std::cout << "Hello World!\n";
C obj = f();

}

Hello World!
A copy was made.
A copy was made.

Hello World!
A copy was made.

Hello World!



What does compiler optimization mean for
programmers?

e Classic dilemma: Abstraction vs. performance

* Develop good coding habits informed with program performance
characteristics

* Profile code with gprof to gain insights into program’s performance.
Implement optimizations accordingly — performance bottleneck
analysis (HW?2)

* Do not prematurely optimize and complicate code-logic without
understanding the impact
“Premature optimization is the source of all evil” — Donald Knuth



What does compiler optimization mean for
programmers?

bignum::Bignum bignum: :Bignum::operator*(const Bignum& other) const {
Bignum prod(num_digits() + other.num _digits());

const Bignum& smaller = (*this < other ? *this : other);
const Bignum& larger = (*this < other ? other : *this);
+ // const Bignum& smaller = (*this < other ? *this : other);
- // const Bignum& larger = (*this < other ? other : *this);

for(uint32_t 1 = 0; 1 < smaller.num_digits(); ++1) {
std::reference_wrapper<const Bignum> smaller = other;
std::reference_wrapper<const Bignum> larger = *this;

if (*this < other) {
smaller = *this;
larger = other;

}

for(uint32_t 1 = 0; 1 < smaller.get().num digits(); ++1) {
uint32 t carry = 0;
for(uint32_t j = 0; j < larger.num_digits(); ++j) {
prod[i + j] += smaller[i1] * larger[j] + carry;
- for(uint32_t j = 0; j < larger.get().num_digits(); ++j) {
- prod[i1 + j] += smaller.get()[i1] * larger.get()[j] + carry;
carry = prod[i + j] / 10;
prod[i + j] %= 10;

+ 4+ + o+



What is an iterator?

e Used for iterating through a container.
Why not use a for(int i = 0; i < container.size(); ++i) loop?

* Abstracts the container and provides access to elements. Separates
the algorithm from the container.
For example, sort(container.begin(), container.end()); can sort a vector
or a list

 Special iterators: begin(), end(), rbegin(), rend()

iterators: begin() end()

elements: — {{—"/




Iterators: Use cases — std::sort

void f(vector<Entry=& vec, list<Entry=& lst)
{

sort(vec.begin(),vec.end()); // use <
for order

unique copy(vec.begin(),vec.end(),lst.begin()); // don't
copy adjacent equal elements

}

bool operator<(const Entry& x, const Entry& y) // less than
{

return Xx.name<y.name; // order Entries by their names

by

list<Entry> f(vector<Entry>& vec)
{

list<Entry> res;

sort(vec.begin(),vec.end());

unique copy(vec.begin(),vec.end(),back inserter(res));
// append to res

return res;

by



Iterators: Use cases — std::find

bool has c(const string& s, char c) // does s contain the
character c?
{

return find(s.begin(),s.end(),c)!=s.end();

}

template<typename T>
using Iterator = typename T::iterator; [/ T's iterator

template<typename C, typename V>
vector<Iterator<C>> find all(C& c, V v) // Tind all
occurrences of v in ¢
{

vector<Iterator<(>> res;

for (auto p = c.begin(); p!=c.end(); ++p)

if (*p==v)
res.push_back(p);
return res;



Type of iterators

* |terators provide a ++ operator to point to the next element, * for directly
accessing the element

* A vector iterator may be different from a list iterators

 Stream lterators
 Input/output iterators

ostream_iterator<string> oo {cout}; // write strings to cout
int main()
{

*00 = "Hello, "; // meaning cout<<"Hello, "

++00;
*00 = "world!\n"; // meaning cout<<"world!\n"

}
e std::stringstream, std::ifstream, std::ofstream



Predicates

* A function that returns true or false
e Can pass to some algorithm that uses iterators to filter the results

auto p = find if(m.begin(), m.end(), [](const auto& r) { return
r.second>42; });



Overview of algorithm

e for_each —run a function for each element in a container
* find — find the first match

e count — count the number of occurrences

* replace, replace _if — Replace elements selectively

* copy, move, merge — copy/move/merge containers

* binary_search — search for an element in a sorted container
(logarithmic for RandomAccesslterators, linear otherwise)

* transform, generate, fill, rotate, max, min...



