
CS 4414: Recitation 5
Sagar Jha



Today’s agenda

Compiler optimizations (BO Chapter 5)
• What is the goal of optimization?
• Tricky questions
• Compilation techniques: Code motion, Out-of-order execution, Data flow 

analysis, Loop unrolling, Inline expansion
• g++ optimization options
• C++ specific optimizations
Iterators and Algorithm (BS Chapter 12)
• What are iterators? How to use them?
• Type of iterators
• Overview of algorithms



What is the goal of optimization?



What is the goal of optimization?

• Improve program performance without changing its behavior

• C++ compilers must follow the as-if-rule: All optimizing 
transformations are allowed as long as they do not change the 
“observable behavior” of the program

• Notable exceptions:
• Undefined behavior

• Copy elision

• Return value optimization



Tricky question 1

• Are the following programs equivalent?



Tricky question 2

• Are the following programs equivalent?



Loop-invariant code motion



Loop-invariant code motion



Out-of-order execution

• Modern processors can execute multiple instructions in parallel

• The degree of parallelism depends on how independent individual 
instructions are

• Reorder instructions based on availability of input data and execution 
unit

• A form of data-flow analysis/computation



Data flow analysis

• Compute possible values of variables at different points in the 
program during compilation



Loop unrolling

• Reduces the number of iterations for a loop



Loop unrolling

• Using multiple accumulators can improve performance



Function inlining and consts

• Inline expansion, by placing a copy of the function at call site, can 
remove function-calling overheads

• C++ offers the inline keyword to suggest inlining to the compiler, in 
most cases, you don’t need to manually specify it

• Const, likewise, is for improving program readability and correctness

• Compilers can often figure out const-related optimizations by 
themselves



Branch prediction

• Branches (if-else conditions, loops) interfere with instruction 
pipelining

• Branch prediction tries to prefetch instructions by betting on the 
result of the condition, backtracking if needed

• Most upvoted stackoverflow question: 
https://stackoverflow.com/questions/11227809/why-is-processing-a-
sorted-array-faster-than-processing-an-unsorted-array
Performance of processing a sorted array is almost six times faster
Summary: predicting data[c] > 128 in the user’s code is almost always 
successful with a sorted array

https://stackoverflow.com/questions/11227809/why-is-processing-a-sorted-array-faster-than-processing-an-unsorted-array


Aggressive optimization can potentially 
reduce performance!
• Aggressive inlining and loop unrolling can increase code size

• Larger instruction size reduces the performance of the instruction cache

• g++ optimization levels:
• -O0: default, no optimizations – useful for debugging

• -O1: core optimizations (function inlining, tail recursion, not calling functions with no 
side-effects, reusing stack space of variables no longer used) – decent debugging 
experience

• -O2: more aggressive inlining and loop unrolling, vector instructions for simple loops 
and independent operations – industry standard

• -O3: even more aggressive inlining and unrolling – impossible to debug

• -Oz: smallest possible code size, useful when executing on microprocessors



Live demo on https://godbolt.org



Other C++-specific optimizations

• RAII for predictable performance (and not garbage collection)
• Garbage collection (in Java etc.) may be potentially inefficient:

• Unpredictable performance: The program may be paused for garbage collection to 
run, if the program is running out of memory

• Heavy RAM usage: program uses more memory because objects are not cleaned up 
right when they go out of scope

• Memory leaks possible in some cases
• Scalability: Garbage collection performance may be worse with small number of 

threads

• Copy elision: Eliminate unnecessary copying of objects. E.g. not copying a 
temporary class object into another object
• Return value optimization (RVO): Eliminate temporary object holding a function’s 

return value



RVO can change program behavior!



What does compiler optimization mean for 
programmers?
• Classic dilemma: Abstraction vs. performance

• Develop good coding habits informed with program performance 
characteristics

• Profile code with gprof to gain insights into program’s performance. 
Implement optimizations accordingly – performance bottleneck 
analysis (HW2)

• Do not prematurely optimize and complicate code-logic without 
understanding the impact
“Premature optimization is the source of all evil” – Donald Knuth



What does compiler optimization mean for 
programmers?



What is an iterator?

• Used for iterating through a container.
Why not use a for(int i = 0; i < container.size(); ++i) loop?

• Abstracts the container and provides access to elements. Separates
the algorithm from the container.
For example, sort(container.begin(), container.end()); can sort a vector 
or a list

• Special iterators: begin(), end(), rbegin(), rend()



Iterators: Use cases – std::sort



Iterators: Use cases – std::find



Type of iterators

• Iterators provide a ++ operator to point to the next element, * for directly 
accessing the element

• A vector iterator may be different from a list iterators

• Stream Iterators
• Input/output iterators

• std::stringstream, std::ifstream, std::ofstream



Predicates

• A function that returns true or false

• Can pass to some algorithm that uses iterators to filter the results



Overview of algorithm

• for_each – run a function for each element in a container

• find – find the first match

• count – count the number of occurrences

• replace, replace_if – Replace elements selectively

• copy, move, merge – copy/move/merge containers

• binary_search – search for an element in a sorted container 
(logarithmic for RandomAccessIterators, linear otherwise)

• transform, generate, fill, rotate, max, min…


