
CS 4414: Recitation 2
Sagar Jha

Today: More C++ (Types, Containers)

• We will talk about C++ types, std::vector and std::map

• Basic C++ philosophy
• RAII: discussed in the last recitation, will see more of it in the future

• C++ prioritizes performance: more compile time optimizations, less runtime
checks

• Gives programmers control over performance, places a lot of faith on them to
write correct code

• C++ aims to be backward compatible with C and older versions of C++. Many
obscure, outdated features exist in C++.

Variables

• A C++ variable has a name, a type, a value and an address in memory

file:var.png

• Can obtain the address (represented in hex) with the & operator

Types

• Primitive data-types: bool, char, int, float, double…

• Size of a type is implementation defined, use sizeof to find the size

• User defined types: struct, class…

Pointer and array type

• A pointer stores the memory address of a variable. (correction: int* p = &x)

• The variable can be accessed by dereferencing the pointer. Beware of null-
dereferencing!

• Size of a pointer is the size of a memory address – 4 Bytes on a 32-bit machine, 8
Bytes on 64-bit (1 Byte = 8 bit)

Pointer and array type

• Pointer arithmetic: Adding 1 to a pointer returns the address of the
next variable

• Native arrays can be seen as pointers

• Char** - pointer to a char*, represents an array of strings

Bool and char type, auto keyword

• A bool is a single bit. Its value is 0 or 1 (false or true)

• A char is 1 Byte on most machines, can take values from 0 to 255

• Beware of implicit conversions! (correction my_ptr != nullptr)

Bool and char type, auto keyword

• Compiler infers type of variable defined with the auto keyword

Class
• Class initializer list in the constructor, this points to the object

• Don’t use new, that returns a pointer to the object!

Type qualifiers (const, volatile)
• A const variable cannot change state after declaration

Type qualifiers (const, volatile)

• Const vs. constexpr – constexpr’s value is known at compile-time

Plain Old Data (POD)

• Why must array size be constant at compile time?

• A POD type is a class or struct without pointers, constructors/destructors
and virtual member functions

• Why is a POD type useful?
• All the struct’s data is stored in contiguous memory. This enables some optimizations

and one can reliably copy the struct by copying the memory contents

• A struct can contain native arrays and still be POD

Source: https://stackoverflow.com/questions/146452/what-are-pod-types-
in-c

https://stackoverflow.com/questions/146452/what-are-pod-types-in-c

When to use pointers

• Prefer objects always over pointers, std::vector or std::array over
native arrays

• If an object must be shared across multiple classes, prefer smart
pointers (std::unique_ptr<T>, std::shared_ptr<T>)

• Read: https://stackoverflow.com/questions/22146094/why-should-i-
use-a-pointer-rather-than-the-object-itself

https://stackoverflow.com/questions/22146094/why-should-i-use-a-pointer-rather-than-the-object-itself

Standard Template Library

• Collection of classes and functions for general-purpose use

• Provides container types (list, vector, map), pair, tuple, string, thread
and many other functionalities

• Available in the std namespace

std::vector<T> – Most important C++
container
• A dynamic array – Can be resized as required, initial size 0 if not specified

• Memory representation: elements are stored contiguously in memory

• Provides O(1) random access with [] or std::vector<T>::at, no bounds
checking with []

• std::vector<T>::push_back(const T& value) – append to the end of the
vector. Similarly pop_back. Amortized O(1) complexity

• Size vs. capacity. Do not confuse with sizeof.

• Memory reallocation on resizing or push_back, prefer constructing vectors
with the total size and then filling in elements

• O(n) complexity for insertion and removal at a random position in the
vector

std::vector<T> vs. std::list<T>

• A C++ list is a collection of elements at non-contiguous locations in
memory, linked using pointers

• Provides O(1) insertion and deletion from any location of the list, but
O(n) complexity for random access

std::vector<T> vs. std::list<T>

std::map<K, V> - Second most important
container
• Maps keys to values

• std::map<K,V>::at vs []

• Use a map when you need to access elements by key, a vector when
you need to access by position

• Implementation using trees, O(log n) complexity for insert, remove,
erase, search

• std::unordered_map<K, V> - hash-based map, O(1) but unpredictable
complexity. Prefer std::map unless there is a specific reason

• std::insert ignores if key is already present!

We often need to convert between containers

