
CS 4414: Recitation 11
Sagar Jha



What is a filesystem?

• Manages data in files and directories

• Hierarchical structure: files in directories, 
directories have subdirectories

• Can store data on HDDs, SSDs or even RAM



What is a filesystem?

• File metadata: name, size, location etc.

• File data: actual contents

• Data ops: Actual file I/O – reading and writing the file

• Metadata ops: creating, deleting or renaming a file

• Blocking: A file is divided into blocks of usually 4 KB



File allocation table (FAT)



Linux exiftool



Distributed file system (DFS)

• Filesystem that is accessed over 
the network from multiple 
clients

• A remote server supports the 
same filesystem interfaces



Distributed file system (DFS)

Main goal: Provide the abstraction of a filesystem but one that is accessible from 
multiple clients simultaneously

• Access transparency: Same API for the clients as if they were accessing a local 
filesystem

• Support for concurrency: Clients see a consistent view of the filesystem when 
multiple clients are accessing it simultaneously

• Fault-tolerance and scalability



Applications and advantages of a DFS



Applications and advantages of a DFS

• Batch processing of big data

• Processing big data using 
MapReduce

• Large scale ML

• Don’t want to copy or move 
too much data around



Applications and advantages of a DFS

• Multiple users can share files

• Can access files from multiple 
devices



Applications and advantages of a DFS

• Elasticity – Can scale to petabytes or more storage on demand

• Ease of access – Data can be accessed across multiple devices

• Centralized administration – makes it easier to offer consistency 
guarantees in a distributed setting

• Persistent way to store configuration files



Network file system (NFS)

• A simple implementation that 
combines local filesystem on 
multiple server nodes

• A client makes a request over 
the network that is fulfilled by 
exactly one server node



NFS development

• Originally developed by Sun Microsystems in 1984

• NFSv2: Stateless server with locking, UDP for sending requests (1989)

• NFSv3: 64-bit file sizes and offsets, asynchronous writes support, TCP 
for transport (1995)

• NFSv4: Security improvements, stateful protocol (2000)



Limitations of NFS

• Synchronous I/O: All read/write operations finish only when the data 
has been written to disk on the server side
• write to nonvolatile RAM and asynchronously later to disk

• batching writes: gather multiple write requests from different clients to 
amortize I/O costs

• Centralized design: Poor performance for large files as read/write is
not parallelizable

• No support for consistency with multiple clients



Object-based file 
systems

• A file is stored as a collection of distributed, variable-
sized objects instead of fixed-sized blocks

• Object storage servers store the objects, service 
read/write requests

• A separate metadata server (MDS) performs metadata 
operations (open, rename)



Google File System (GFS)



What is Ceph?

• A distributed file system built upon object storage devices

• Written in C++

Ceph Goals

• Performance: Read/write throughput, high throughput for metadata 
operations

• Reliability: Resistant to node failures, adapts with shifting workloads

• Scalability: High performance with many clients and large data sizes



Ceph architecture



Ceph’s main insight

• Object-based file systems are bottlenecked for metadata operations

• Metadata storage needs to be distributed as well

• Delegate intelligence to object storage devices (OSDs) to minimize the 
number of metadata operations and improve parallelism



How important are metadata operations?

• Filesystem metadata 
operations can make up to 50% 
of an application workload

• In UNIX systems, most blocks 
die within an hour



Optimization 1: Data distribution with CRUSH

• Controlled replication under 
scalable hashing

• File divided deterministically 
into objects using generating 
functions

• Object locations can be 
independently calculated, no 
need to contact the metadata 
server



Optimization 2: Dynamic distributed 
metadata management
• Novel metadata cluster architecture based on Dynamic Subtree 

Partitioning 

• Intelligent distribution of metadata workload among hundreds of 
metadata servers

• Dynamic load distribution based on access patterns



Optimization 3: Distributed reliability and high 
availability protocols
• Focus on effectively utilizing available devices at any point in time

• Replication guarantees across device failures

• Efficient data migration, replication, failure detection and recovery 
protocols



Zookeeper



References

• Ceph: A Scalable, High-Performance Distributed File System 

• NFS Version 3 Design and Implementation

• Why NFS Sucks

• A Comparison of File System Workloads

• The Google File System


