
CS 4414: Recitation 10
Sagar Jha

Today: Multithreading and Functional
Programming in C++
Multithreading Part III (BS Chapter 15)
• std::condition_variable
• Asynchronous computation in C++: std::future<>, std::promise<>,

std::packaged_task, std::async
• Code walkthrough of third-party thread pooling libraries

Lazy Evaluation in C++ (From the book Functional Programming in C++)
• Implementation of lazy_val
• Lazy evaluation as an optimization technique
• Generalized memoization
• Expression templates

Synchronization in C++: std::condition_variable

• Pattern: A thread waits for a condition to be true. Another thread
updates the condition and notifies the first thread.

• Updating thread
• acquire a std::mutex (using a std::scoped_lock)

• perform the update

• call notify_one or notify_all ()

• Waiting thread
• acquire the same std::mutex (using a std::unique_lock)

• call wait, wait_for or wait_until supplying the condition as a predicate

std::condition_variable: wait and notify

template< class Predicate >
void wait(std::unique_lock<std::mutex>& lock, Predicate pred);

• atomically unlocks lock

• reacquires it after waking up

• continues if the condition is true

• goes back to wait (unlocking again) if the condition is false

void notify_one() noexcept;

• unblocks one of the waiting threads

• notify_all unblocks all of the waiting threads

http://en.cppreference.com/w/cpp/concepts/Predicate
http://en.cppreference.com/w/cpp/thread/unique_lock
http://en.cppreference.com/w/cpp/thread/mutex
http://en.cppreference.com/w/cpp/concepts/Predicate

Notes about std::condition_variable

• Beware of spurious wake-ups! Always check the condition in wait.

• Why use a std::unique_lock<std::mutex> in wait? Because
std::scoped_lock<std::mutex> does not offer the lock and unlock
operations required in wait.

• std::condition_variable only works with std::mutex. Use
std::condition_variable_any to work with other mutex types, for e.g.
std::shared_mutex

• A writer can notify all readers waiting using
std::condition_variable_any::notify_all. All readers can now work
simultaneously holding the std::shared_mutex.

Thinking in terms of tasks

• In many cases, we don’t need to think at the lower level of threads
and locks

• Task – work that needs to be done, potentially concurrently

• C++ provides std::future and std::promise, std::packaged_task and
std::async

• Defined in #include<future>

Communicating tasks: std::future<> and
std::promise<>
• Enable transfer of value between threads (or tasks) without explicit

use of a lock

• std::promise<> is used by the producer task to supply the value

• std::future<> is used by the thread that needs the value

Using std::future<T>

T get();
• Blocks the thread until the result is available
• If the producer thread sets an exception, throws that same exception

template< class Rep, class Period >
std::future_status wait_for(const std::chrono::duration<Rep,Period>&
timeout_duration) const;
• Waits for a value until the provided timeout
• If you only want to check if the result is available without waiting, pass a

duration of 0
• returns one of future_status::deferred, future_status::ready or

future_status::timeout. If ready, call get to obtain the value

http://en.cppreference.com/w/cpp/thread/future_status
http://en.cppreference.com/w/cpp/chrono/duration

Using std::promise<R>

std::future<R> get_future();
• Returns the associated future object
• Can only call this once

void set_value(const R& value);
• Atomically stores the value into the shared state
• Now get on the associated future will unblock

void set_exception(std::exception_ptr p);
• Indicate that there won’t be any value, but an exception instead

http://en.cppreference.com/w/cpp/thread/future
http://en.cppreference.com/w/cpp/error/exception_ptr

Communicating tasks:
std::packaged_task<R(Args…)>
• Solves the problem of managing futures and promises

Important functions

• template <class F> explicit packaged_task(F&& f);

• std::future<R> get_future();

• void operator()(ArgTypes... args);

http://en.cppreference.com/w/cpp/thread/future

std::packaged_task
<R(Args…)>
code example

Communicating tasks: std::async

• Async is used to specify tasks that run asynchronously, potentially in
other threads

• No need to even think about threads, C++ manages them possibly as
part of a thread pool

• There is no synchronization between the async tasks. Don’t use it if
you need synchronization!

• For specialized parallel executions, C++’s algorithm library offers
execution policies such as std::execution::seq, std::execution::par,
std::execution::par_unseq, and std::execution::unseq

std::async
code
example

Multithreading in action: Implementing a
thread pool
• C++ does not offer a native thread pool library

• We will review the implementation of two third-party libraries:
• ThreadPool: https://github.com/progschj/ThreadPool

• C++ Thread Pool Library: https://github.com/vit-vit/CTPL (referred only for
function resize)

https://github.com/progschj/ThreadPool
https://github.com/vit-vit/CTPL

ThreadPool: Public functions

• ThreadPool::ThreadPool(size_t threads);
• Create a thread pool with threads number of threads

• template<class F, class... Args>

auto ThreadPool::enqueue(F&& f, Args&&... args)

-> std::future<typename std::result_of<F(Args...)>::type>
• Add a new task to the pool

• ThreadPool::~ThreadPool()
• Non-trivial destructor since we are working with threads

ThreadPool: Data members

• std::vector< std::thread > workers;
• collection of threads in the pool

• std::queue< std::function<void()> > tasks;
• collection of tasks that need to be completed

• std::mutex queue_mutex;

std::condition_variable condition;

bool stop;
• For synchronization

ThreadPool:
Implementation
of the
constructor

ThreadPool:
Implementation
of enqueue

ThreadPool:
Implementation
of the destructor

CTPL:
Implementation
of resize

Part II: Lazy Evaluation in C++

• Chapter 6 of Functional Programming in C++ by Ivan Čukić

• C++ does not provide lazy evaluation like Haskell does
• auto P = A * B; for matrices A and B will be evaluated immediately

• But we can use C++’s functional programming features for lazy eval.

• For example, one can define

• Now, P can be called when the value is needed

• What if the value is needed multiple times?

auto P = [A, B] { return A * B; };

Laziness in C++

• Define a class lazy_val with the following data members

• Declaring cache-related members as mutable means that the member
functions can be declared const

template <typename F>

class lazy_val {

private:

F m_computation;

mutable bool m_cache_initialized;

mutable decltype(m_computation()) m_cache;

mutable std::mutex m_cache_mutex;

public:

...

};

Implementation of implicit cast of lazy_val

operator const decltype(m_computation())& () const

{

std::unique_lock<std::mutex> lock{m_cache_mutex};

if (!m_cache_initialized) {

m_cache = m_computation();

m_cache_initialized = true;

}

return m_cache;

}

We don’t even need the mutex with std::call_once!

template <typename F> class lazy_val {

private:

F m_computation;

mutable decltype(m_computation()) m_cache;

mutable std::once_flag m_value_flag;

public:

...

operator const decltype(m_computation())& () const {

std::call_once(m_value_flag, [this] {

m_cache = m_computation();

});

return m_cache;

}

};

Laziness as an
optimization technique

• Sorting collections lazily

• What if you only need the top k
elements?

• For example, displaying results
page by page for a web query

• Lazy quicksort: Don’t sort the
partitions that are not part of the
result

Laziness as an
optimization technique

• Pruning recursion trees by caching
function results

• Fibonacci is a classic example

• Also applicable to dynamic
programming through memoization

std::vector<unsigned int> cache{0, 1};

unsigned int fib(unsigned int n) {

if (cache.size() > n) {

return cache[n];

} else {

const auto result =

fib(n - 1)

+ fib(n - 2);

cache.push_back(result);

return result;

}

}

Generalized memoization

• Question: Can we write a generalized function wrapper that can
provide caching? We don’t need to be smart about what to cache.

template <typename Result, typename... Args>

auto make_memoized(Result (*f)(Args...)) {

std::map<std::tuple<Args...>, Result> cache;

return [f, cache](Args... args) mutable -> Result {

const auto args_tuple = std::make_tuple(args...);

const auto cached = cache.find(args_tuple);

if (cached == cache.end()) {

auto result = f(args...);

cache[args_tuple] = result;

return result;

} else {

return cached->second; }

};

}

What about recursive functions?

• Refer to the book for an implementation

• Makes the following possible with automatic memoization:

auto fibmemo = make_memoized_r<

unsigned int(unsigned int)>(

[](auto& fib, unsigned int n) {

std::cout << "Calculating " << n << "!\n";

return n == 0 ? 0

: n == 1 ? 1

: fib(n - 1) + fib(n - 2);

});

Expression templates and lazy string concat.

• Consider the following expressions:

• + is a left-associative binary operator, so it’s evaluated as

• This generates and destroys strings that are not needed. This is not
efficient.

std::string fullname = title + " " + surname + ", " + name;

std::string fullname = (((title + " ") + surname) + ", ") + name;

Solution: Define a class that can hold multiple
strings together using variadic templates

template <typename... Strings> class lazy_string_concat_helper;

template <typename LastString, typename... Strings>

class lazy_string_concat_helper<LastString, Strings...> {

private:

LastString data;

lazy_string_concat_helper<Strings...> tail;

public:

...

}

template <> class lazy_string_concat_helper<> {...}

Definition of operator +

lazy_string_concat_helper<std::string,

LastString,

Strings...>

operator+(const std::string& other) const {

return lazy_string_concat_helper

<std::string, LastString, Strings...>(

other,

*this);

}

Final remarks about template expressions

• We can hold the operands (strings in case of string concatenation) by
references to avoid copying

• But we need to make sure that we only access the expression as long
as the strings are in scope

