[bookmark: _mtl43s8z3kjt]Nov / 02 / 2020
[bookmark: _k6wgml8x0i0i]Multithreading Part ll
· Linux Source Files and how to measure them
· Source program of linux-5.8-rc7
· Many files are small in size
· Most header file <2.3 and 6.25 KB
· Most .c files are <100KB
· Linux Command Line to find the above :
· Compute number of files of a given type: find [directory] -name *.h | wc -l (-l:count the number of lines)
Compute file size: find linux-5.8-rc7/ -name *.c| xargs du -b | awk ‘{print $1}’ | sort -n | uniq -c > c_file_stats , du-: estimate file space usage , sort -n : sort in numerically
· wc++ example
						Worker thread 1			
Main thread				Worker thread 2			Final merge & sort
(collect the path names; 		Worker thread 3			
Spawn worker threads)		…
						(process the file)
· Measuring Performance
· Not printing results on console(which may affect the performance)
· Evaluation: local laptop (4 physical, 8 logical cores) vs. remote server (32 physical, 64 logical cores)
· Bash script to measuring the performance
(taskset: define which threads to use)
Taskset 0x01 [./wc++]
Questions:
1. 4 threads use 4 physical cores?
2. 4 threads using 1 core? Hyperthreading, performance not necessarily improve, since it doesn’t mean 4 times parallel
· Breaking down process of wc++:
· Find_all_files (sequential) → t_process_file (parallel) → t_merge (seq <-> parallel) → n_files_processed → n_bytes_processed → t_sort
· based on the breakdown, could decide how to optimize it
· 1~4 threads time spent breakdown
· Too large number of threads will change the bottleneck to merging and sorting. For example, 64 threads to run wc++ (introduce contention to enter the same critical section)
· Changes and comparison
· How to change and access the map
· How to parse and read the file content: word-by-word
· Static file assignment to thread:
· Statically partition and assign each file to the threads
· Advantage: don’t need std::atomic<uint64_t> to find the unique file indexes
Files may exit at different times, which may be good to avoid contention at the merging step.
· Disadvantage: if the files are unevenly distributed, then many threads may need to wait for a very slow thread.
· Performance improvement
· Measure and compare the time spent for different file sizes
· Gprof
· Idea 1: batch file processing --- merge multiple files into a single string and process them -no apparent improvement
· Idea 2: parallel merge --- thread 0, thread1 merge ; while thread2, thread3 merge … → thread 0, thread 2 merge ; while thread 4, thread 6 merge …..
· How to measure the performance ?
· Self-define: util get_time
uint64_t util::get_time(){
		static const auto start_time = std::chrono::stead_clock::now();
		const auto end_time = std::chrono::stead_clock::now();
		uint64_t nanoseconds_elapsed = std::chrono::duration<double, std::milli> (end_time - start_time);
		return nanoseconds_elapsed;
}
· No printing during the measurement (Printing is expensive to perform)
· Additionally:
· Mutex: use lock(...);
· Shared_mutex : use shared_lock(mutext_type& m);

