
Writing an operating system in
2.5 years

Yunhao Zhang

• P0: understand C and user-level instructions

• P1: understand context-switch and multi-threading

• P2: understand exception and privilege levels

• P3: understand the disk abstraction

• P4: understand the file abstraction

• P5 (optional): understand I/O bus and devices

But first, writing an OS in one semester

Why 2.5 years? An overview

Jun 2020

Motivation Obstacles Ideas Implementation Evaluation

Nov 2021 Jan 2022 Jun 2022Sep 2020 Dec 2022

~20K lines of code

Intel / Arm CPU

Linux / MacOS user process

By June 2020, we only had egos-classic

20K lines of code

Students read a very small portion

2K lines of code

Students read a large portion

Intel x86 (1987)

CPU document has

several thousands of pages

RISC-V (2010)

CPU document

has <100 of pages

CS 3410
ECE 4750

User-mode OS
Easier to compile and run

OS on real hardware
More realistic to play with

~20K 2K

x86 / ARM RISC-V

Linux / MacOS QEMU / board

→

→

→

Motivations

Lesson
Good motivations should convince

non-experts why the work is valuable.

Obstacles Ideas Implementation EvaluationMotivation

Hello World

Summer 2020

Sep 12, 2020

ideal possible; OS hello-world≠ ≠

Summer 2020 Fall 2020

Obstacles

Obstacles & Hope

Only 24KB memory

No disk device

Timer interrupt is supported

Privilege levels and exceptions are supported

CPU is well-documented and board is not too expensive

Obstacles & Hope: What to do?

Need to modify the hardware design

Need to write a kernel with the CPU support and documents

Background: Open-source hardware

Running open-source hardware

A binary file
encoding the hardware design

(clocks, registers, circuits, etc.)

FPGA emulates the hardware design

Idea #1: Increase the memory size

https://github.com/chipsalliance/rocket-chip/blob/
b21c7879b3ea22f69cb8457109561f37c225f8ea/src/main/scala/subsystem/Configs.scala#L78

https://github.com/chipsalliance/rocket-chip/blob/b21c7879b3ea22f69cb8457109561f37c225f8ea/src/main/scala/subsystem/Configs.scala#L78
https://github.com/chipsalliance/rocket-chip/blob/b21c7879b3ea22f69cb8457109561f37c225f8ea/src/main/scala/subsystem/Configs.scala#L78

Background: SPI (simpler than USB)

Chapter 19 of Sifive FE310 manual, v19p04
https://github.com/yhzhang0128/egos-2000/blob/main/references/sifive-fe310-v19p04.pdf

SPI: Serial Peripheral Interface

6 pins
GND + VCC + SPI (4)

Idea #2: Remap SPI1 to a microSD card

old SPI1

new SPI1

Idea #2: Remap SPI1 to a microSD card

https://github.com/sifive/fpga-shells/blob/14297af2878dc648ffd5751010fa72094ff444b0/xilinx/arty/constraints/arty-master.xdc#L48

Find and replace
these 4 wires in the

hardware design

https://github.com/sifive/fpga-shells/blob/14297af2878dc648ffd5751010fa72094ff444b0/xilinx/arty/constraints/arty-master.xdc#L48

Coming up with ideas is difficult

Fall 2020

Obstacles

Fall 2021

Ideas * 2

No progress at all for more than a year.

Not sure whether it can work eventually.

Being the only person pushing this work.

Ideas

Lesson
Ideas are difficult to come up with

and there is no guarantee of success.

Motivation Implementation Evaluation

🥲
Obstacles

Motivation Obstacles Ideas Implementation Evaluation

https://github.com/yhzhang0128/egos-2000/blob/main/references/README.md#software-development-history

Jun 2020 Nov 2021 Jan 2022 Jun 2022Sep 2020 Dec 2022

https://github.com/yhzhang0128/egos-2000/blob/main/references/README.md#software-development-history

A bug taking >1 day to fix

https://github.com/chipsalliance/rocket-chip/blob/b21c7879b3ea22f69cb8457109561f37c225f8ea/src/main/scala/subsystem/Configs.scala#L78

https://github.com/chipsalliance/rocket-chip/blob/b21c7879b3ea22f69cb8457109561f37c225f8ea/src/main/scala/subsystem/Configs.scala#L78

Lesson
Implementing a system is non-trivial.

It requires hard work and determination.

Motivation Obstacles Ideas EvaluationImplementation

Lessons about doing research

• Good motivations should convince non-experts why the work is valuable.

• Ideas are difficult to come up with and there is no guarantee of success.

• Implementing a system is non-trivial, taking hard work and determination.

The full 4.5-year research process

Summer 2018 Summer 2020
2 years: Becoming familiar with OS education

Then, challenge the state-of-the-art

Motivation Obstacles Ideas Implementation Evaluation

Jun 2020 Nov 2021 Jan 2022 Jun 2022Sep 2020 Dec 2022

Research in the news

https://hackaday.com/2023/05/18/an-entire-risc-v-operating-system-in-2000-lines/
https://www.hackster.io/news/yunhao-zhang-s-egos-2000-packs-an-entire-risc-v-operating-system-into-just-2-000-lines-of-code-2ba9875524a7

Follow-up from OS hobbyists

Sipeed's Lichee RV64 board

https://github.com/cheofusi/egos-2000-d1

Future work

Connect with our ECE4750

Leverage the 256MB DDR memory
and the Ethernet port on the Arty boardEnable multi-core in QEMU

and implement locks in egos-2000

Vision

This project's vision is to help every college student read all the code of an operating system.

