
FAT File System

Robbert van Renesse
Yunhao Zhang

1

Intro

• Underneath any file system, database system,
etc. there are one or more block stores

• A block store provides a disk-like interface:
– a storage object is a sequence of blocks
• typically, a few kilobytes

– you can read or write a block at a time

• The block store abstraction doesn’t deal with
file naming, security, etc., just storage

2

EGOS Storage Architecture

3

dirsvr bfs blocksvr syncsvr

ramfile fs.dev page.dev

app2app1
user

space

kernel
space

bfs: block file server

• Stores all its user and meta data in blocksvr
• Maintains for each file a “stat structure”:
– size in bytes
– owner
– modification time
– access control information
– etc.

• files are indexed by i-node numbers
– 0, 1, 2, …
– #i-nodes determined by blocksvr

5

Block Store Abstraction
• A block store consists of a collection of i-nodes
• Each i-node is a finite sequence of blocks
• Simple interface:

– block_t block
• block of size BLOCK_SIZE

– getninodes() à integer
• returns the number of i-nodes on this block store

– getsize(inode number) à integer
• returns the number of of block on the given inode

– setsize(inode number, nblocks)
• set the number of blocks on the given inode

– release()
• give up reference to the block store

6

Block Store Abstraction, cont’d

– read(inode, block number) à block
• returns the contents of the given block number

– write(inode, block number, block)
• writes the block contents at the given block number

– sync(inode)
• make sure all blocks are persistent

– if inode == -1, then all blocks on all inodes

7

Block Stores can be Layered!

Each layer presents a block_if abstraction

CACHEDISK

STATDISK

FILEDISK

block_if

keeps a cache of recently
used blocks

keeps track of #reads and
#writes for statistics

keeps blocks in a Posix file

10

Multiplexing

• A single block store can be “multiplexed”,
offering multiple virtual block stores

• One way is simply partitioning the underlying
block store into multiple disjoint sections
block_if partdisk_init(block_if below,
 unsigned int ninodes, block_no partsizes[])

11

Partitioning

PARTDISK

DISK (1024)

12

CLOCKDISK

Sharing a Block Store

• partdisk creates multiple fixed partitions, one
for each file, but this has very similar
problems to partitioning physical memory
among processes

• You want something similar to paging
– more efficient and flexible sharing
– techniques are very similar!

13

Each file is stored as linked list of blocks
– First word of each block points to next block
– Rest of disk block is file data

+ Space Utilization: no space lost to external fragmentation
+ Simple: only need to find 1st block of each file

– Performance: random access is slow
– Implementation: blocks mix meta-data and data

Linked List Allocation

14

File
block

0

next

File
block

1

next

File
block

2

next

File
block

3

next

File
block

4

next

File A

Physical
Block 7 8 33 17 4

Microsoft File Allocation Table
• originally: MS-DOS, early version of Windows
• today: still widely used (e.g., CD-ROMs, thumb drives,

camera cards)

File table:
• Linear map of all blocks on disk
• Each file a linked list of blocks

File Allocation Table (FAT)

15

[late 70’s]

data

next

data

next

data

next

decoupled

physically

data

Data BlocksFAT

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20

File 9 Block 3

File 9

File 12

File 12 Block 1
File 9 Block 4

File 9 Block 0
File 9 Block 1
File 9 Block 2
File 12 Block 0

FAT File System

16

• 1 entry per block
• EOF for last block
• 0 indicates free block

0

0

0

EOF
EOF

0
0
0

0
0
0

0

0

0
0

0
10

11

3

17

16

P4: Partitioning with fatdisk
• fatdisk offers multiple virtual block stores
• The underlying block store is partitioned into four

sections:
1. superblock

• at block #0
2. a fixed number of i-node blocks

• start at block #1
• the number is given in the superblock

3. the FAT table
• the number is given in the superblock

4. the remaining blocks
• data blocks, free blocks

17

fatdisk: layout

block number 0 1 2 3 4 5 6 7 8 9 1
0

1
1

1
2

1
3

1
4

1
5

blocks:

remaining blocksinode
blocks

super
block

18

FAT
blocks

fatdisk superblock

struct fatdisk_superblock {
 block_no n_inodeblocks;

 // # blocks containing inodes

 block_no n_fatblocks;

 // # blocks containing fat entries

 block_no fat_free_list;

 // fat index of the first free fat entry};

 …
}

19

fatdisk i-node
(one per virtual block store)

struct treedisk_inode {
 block_no head;

 // block number of first block

 // should be 0 if nblocks == 0

 block_no nblocks;
 // #blocks in the virtual block store

};

20

fatdisk i-node block
#define INODES_PER_BLOCK (BLOCK_SIZE /
 sizeof(struct fatdisk_inode))

struct fatdisk_inodeblock {

 struct fatdisk_inode inodes[INODES_PER_BLOCK];

};

21

fatdisk: i-node blocks

inodes:

22

block number 0 1 2 3 4 5 6 7 8 9 1
0

1
1

1
2

1
3

1
4

1
5

blocks:

remaining blocksinode
blocks

super
block

FAT
blocks

fatdisk fat-entry
(one per virtual block)

struct fatdisk_fatentry {
 block_no next;

 // next entry in the file or in the free list

 // 0 (or -1) for EOF or end of free list

};

23

fatdisk FAT block
#define FAT_PER_BLOCK (BLOCK_SIZE /
 sizeof(struct fatdisk_fatentry))

struct fatdisk_fatblock {

 struct fatdisk_fatentry entries[FAT_PER_BLOCK];

};

24

fatdisk: FAT blocks

fat entries:

25

block number 0 1 2 3 4 5 6 7 8 9 1
0

1
1

1
2

1
3

1
4

1
5

blocks:

remaining blocksinode
blocks

super
block

FAT
blocks

General purpose block

union fatdisk_block {
 struct fatdisk_superblock superblock;
 struct fatdisk_inodeblock inodeblock;
 struct fatdisk_fatblock fatblock;
 block_t datablock;
};

26

free list
• Essentially a file containing the unused blocks

struct fatdisk_superblock {
 block_no n_inodeblocks;
 // # blocks containing inodes

 block_no n_fatblocks;
 // # blocks containing fat entries

 block_no fat_free_list;
 // fat index of the first free fat entry};

 …
}

27

fatdisk.c

int fatdisk_create(block_store_t *below,
 unsigned int below_ino, unsigned int ninodes);
• initializes the fatdisk on-disk data structure
– superblock, inode table, FAT table, free list

block_store_t *fatdisk_init(block_store_t *below,
 unsigned int below_ino);
• the fatdisk layer interface

28

Don’t overwrite existing file systems

int fatdisk_create(block_store_t *below,
 unsigned int below_ino, unsigned int ninodes) {
 union fatdisk_block superblock;
 if ((*below->read)(below, below_ino, 0, (block_t *) &superblock) < 0) {
 return -1;
 }
 if (superblock.superblock.n_inodeblocks != 0) {
 printf("fatdisk: one already exists with %lu inodes\n",
 superblock.superblock.n_inodeblocks * INODES_PER_BLOCK);
 return 0;
 }

29

How do you change a byte in a block?

30

