
Layered Block-Structured File
System & Caching

Robbert van Renesse

1

Intro

• Underneath any file system, database system,
etc. there are one or more block stores

• A block store provides a disk-like interface:
– a storage object is a sequence of blocks
• typically, a few kilobytes

– you can read or write a block at a time

• The block store abstraction doesn’t deal with
file naming, security, etc., just storage

2

EGOS Storage Architecture

3

dirsvr bfs blocksvr syncsvr

ramfile fs.dev page.dev

app2app1
user

space

kernel
space

dirsvr: directory server
• Maps path names to file identifiers

– A file identifier is a pair (process id, i-node number)
• Each directory is a file that maintains an array of simple-

name à file identifier mappings
– e.g., { x.txt: 9:34, y.dir: 6:54, z.exe: 9:4 }

• Directories can be organized into graphs (usually trees)
• Root directory is global
• Each process has a working directory
• Can recursively resolve “a/b/x.txt”

– looks up a.dir in working directory
– looks up b.dir in a
– looks up x.txt in b

4

bfs: block file server

• Stores all its user and meta data in blocksvr
• Maintains for each file a “stat structure”:
– size in bytes
– owner
– modification time
– access control information
– etc.

• files are indexed by i-node numbers
– 0, 1, 2, …
– #i-nodes determined by blocksvr

5

Block Store Abstraction
• A block store consists of a collection of i-nodes
• Each i-node is a finite sequence of blocks
• Simple interface:

– block_t block
• block of size BLOCK_SIZE

– getninodes() à integer
• returns the number of i-nodes on this block store

– getsize(inode number) à integer
• returns the number of of block on the given inode

– setsize(inode number, nblocks)
• set the number of blocks on the given inode

– release()
• give up reference to the block store

6

Block Store Abstraction, cont’d

– read(inode, block number) à block
• returns the contents of the given block number

– write(inode, block number, block)
• writes the block contents at the given block number

– sync(inode)
• make sure all blocks are persistent

– if inode == -1, then all blocks on all inodes

7

Simple block stores

• “filedisk”: a simulated disk stored on a Posix
file
– block_if bif = filedisk_init(char *filename, int nblocks)
– has only a single i-node (0)

• “ramdisk”: a simulated disk in memory
– block_if bif = ramdisk_init(block_t *blocks, nblocks)
• Fast but volatile

• block_if is a pointer to the block interface

8

Example code
#include ...
#include “egos/block_store.h”

int main(){

 block_if disk = filedisk_init(“disk.dev”, 1024);

 block_t block;
 strcpy(block.bytes, “Hello World”);

 (*disk->write)(disk, 0, 0, &block);

 (*disk->release)(disk);

 return 0;

}

9

Block Stores can be Layered!

Each layer presents a block_if abstraction

CACHEDISK

STATDISK

FILEDISK

block_if

keeps a cache of recently
used blocks

keeps track of #reads and
#writes for statistics

keeps blocks in a Posix file

10

Example code with layers
#define CACHE_SIZE 10 // #blocks in cache

block_t cache[CACHE_SIZE];

int main(){
 block_if disk = filedisk_init(“disk.dev”, 1024);
 block_if sdisk = statdisk_init(disk);
 block_if cdisk = cachedisk_init(sdisk, cache, CACHE_SIZE);

 block_t block;
 strcpy(block.bytes, “Hello World”);
 (*cdisk->write)(cdisk, 0, 0, &block);
 (*cdisk->release)(cdisk);
 (*sdisk->release)(sdisk);
 (*disk->release)(disk);

 return 0;
}

11

Example Layers
block_if clockdisk_init(block_if below,

 block_t *blocks, block_no nblocks);

 // implements CLOCK cache allocation / eviction

block_if statdisk_init(block_if below);
 // counts all reads and writes

block_if debugdisk_init(block_if below, char *descr);

 // prints all reads and writes

block_if checkdisk_init(block_if below);

 // checks that what’s read is what was written

12

How to write a layer
struct statdisk_state {

 block_if below; // block store below

 unsigned int nread, nwrite; // stats

};

block_if statdisk_init(block_if below){
 struct statdisk_state *sds = calloc(1, sizeof(*sds));

 sds->below = below;

 block_if bi = calloc(1, sizeof(*bi));

 bi->state = sds;

 bi->getsize = statdisk_nblocks;

 bi->setsize = statdisk_setsize;
 bi->read = statdisk_read;

 bi->write = statdisk_write;

 bi->release = statdisk_release;

 return bi;

}
13

statdisk implementation, cont’d
static int statdisk_read(block_if bi, unsigned int ino, block_no offset,
block_t *block){
 struct statdisk_state *sds = bi->state;

 sds->nread++;

 return (*sds->below->read)(sds->below, ino, offset, block);
}

static int statdisk_write(block_if bi, unsigned int ino, block_no offset,
block_t *block){

 struct statdisk_state *sds = bi->state;

 sds->nwrite++;

 return (*sds->below->write)(sds->below, ino, offset, block);
}

static int statdisk_getsize(block_if bi){ ... }

static int statdisk_setsize(block_if bi, block_no nblocks){ ... }

static void statdisk_release(block_if bi){

 free(bi->state);

 free(bi);
}

14

P3: Implement a cache layer

• Suggested: based on clock algorithm
• Two versions:

1. write-through
2. write-behind aka write-back

• Tricky part: what to do if cache is full?

38

• To allocate a block,
inspect the use bit in
the PTE at clock hand
and advance clock
hand

• Used? Clear use bit
and repeat

Clock Algorithm

39

cache entries

Two-Handed Clock

4
0

• One-handed clock: What if
#blocks is very large?

• Use two hands!
• (at fixed angle)

• Leading hand clears use bit
• slowly clears history
• finds victim candidates
• Trailing hand evicts frames
• with use bit set to 0

• Big angle? Small angle?

0
0

0

1

0

0

1

blue 1’s were referenced after use bit
was cleared by green hand

1

evicts 1st use=0
frame it finds

1

cache entries

