
Privilege Levels and Protection

Agenda
• Recap normal function call

• Understand interrupt handler call

• Understand privilege levels and protection

Say main() calls printf()
<main>:
 . . .
 Store caller-saved registers on the stack
 Call printf (set ra to the address of)
 Restore caller-saved registers
 . . .

<printf>:
 Store callee-saved registers on the stack
 . . .
 Restore callee-saved registers
 Return to main() (set pc to ra)

Function call step#1
<main>:
 . . .
 Store caller-saved registers on the stack
 Call printf (set ra to the address of)
 Restore caller-saved registers
 . . .

<printf>:
 Store callee-saved registers on the stack
 . . .
 Restore callee-saved registers
 Return to main() (set pc to ra)

PC

RISC-V Calling Convention: https://riscv.org/wp-content/uploads/2015/01/riscv-calling.pdf

https://riscv.org/wp-content/uploads/2015/01/riscv-calling.pdf

Function call step#2
<main>:
 . . .
 Store caller-saved registers on the stack
 Call printf (set ra to the address of)
 Restore caller-saved registers
 . . .

<printf>:
 Store callee-saved registers on the stack
 . . .
 Restore callee-saved registers
 Return to main() (set pc to ra)

PC

RISC-V Calling Convention: https://riscv.org/wp-content/uploads/2015/01/riscv-calling.pdf

Modified by the
call instruction

Function call step#3
<main>:
 . . .
 Store caller-saved registers on the stack
 Call printf (set ra to the address of)
 Restore caller-saved registers
 . . .

<printf>:
 Store callee-saved registers on the stack
 . . .
 Restore callee-saved registers
 Return to main() (set pc to ra)

PC

RISC-V Calling Convention: https://riscv.org/wp-content/uploads/2015/01/riscv-calling.pdf

Function call step#4
<main>:
 . . .
 Store caller-saved registers on the stack
 Call printf (set ra to the address of)
 Restore caller-saved registers
 . . .

<printf>:
 Store callee-saved registers on the stack
 . . .
 Restore callee-saved registers
 Return to main() (set pc to ra)

PC

Function call step#5
<main>:
 . . .
 Store caller-saved registers on the stack
 Call printf (set ra to the address of)
 Restore caller-saved registers
 . . .

<printf>:
 Store callee-saved registers on the stack
 . . .
 Restore callee-saved registers
 Return to main() (set pc to ra)PC

Function call step#6
<main>:
 . . .
 Store caller-saved registers on the stack
 Call printf (set ra to the address of)
 Restore caller-saved registers
 . . .

<printf>:
 Store callee-saved registers on the stack
 . . .
 Restore callee-saved registers
 Return to main() (set pc to ra)

PC

In particular, ra is restored at PC
<main>:
 . . .
 Store caller-saved registers (ra saved here)
 Call printf (set ra to the address of)
 Restore the ra register
 . . .

<printf>:
 Store callee-saved registers on the stack
 . . .
 Restore callee-saved registers
 Return to main() (set pc to ra)

PC

Agenda
• Recap normal function call

• Understand interrupt handler call

• Understand privilege levels and protection

Problem #1 (out of 2)

If an interrupt happens during main(),

the CPU will call handler(), but the compiler

can’t predict it and store registers on main() stack.

Address problem #1
<main>:
 . . .
 Store caller-saved registers on the stack
 Call handler (set ra to the address of)
 Restore caller-saved registers
 . . .

<handler>:
 Store ALL registers on the handler stack
 . . .
 Restore ALL registers
 Return to main() with ra

Problem #2 (out of 2)

How to restore the return address?

Cannot use ra after solving problem #1.

Recall that ra was restored at PC
<main>:
 . . .
 Store caller-saved registers (ra was saved here)
 Call handler (set ra to the address of)
 Restore the ra register.
 . . . // But the code above doesn’t exist now!

<handler>:
 Store ALL registers on the handler stack
 . . .
 Restore ALL registers
 Return to main() with ra

PC

Address problem #2
<main>:
 . . .
 Store caller-saved registers on the stack
 CPU inserts a call to handler
 (set the mepc CSR to the address of)
 Restore caller-saved registers
 . . .

<handler>:
 Store ALL registers on the handler stack
 . . .
 Restore ALL registers
 Return to main() with mepc, which holds

20400280 <trap_entry>:
trap_entry():
20400280: fa010113 addi sp,sp,-96
20400284: 04112e23 sw ra,92(sp)
. // save other registers
. // do the work of trap_entry()
20400360: 05c12083 lw ra,92(sp)
. // restore other registers
204003a4: 06010113 addi sp,sp,96
204003a8: 30200073 mret

Compiler: solution of problem 1 is and of problem 2 is

Line23 of earth/cpu_intr.c

Recap: ecall in P2
<some user function>:
 . . .
 ecall // Triggers exception 8 or 11
 . . . // CPU inserts a call to handler

<handler>:
 . . .
 // handle the system call
 // read value of mepc (the value of)
 // write value+4 to mepc (the next instruction)
 mret

Agenda
• Recap normal function call

• Understand interrupt handler call

• Understand privilege levels and protection

Privilege levels explained in CPU manuals

SiFive FE310 CPU manual: https://github.com/yhzhang0128/egos-2000/blob/main/references/sifive-fe310-v19p04.pdf

https://github.com/yhzhang0128/egos-2000/blob/main/references/sifive-fe310-v19p04.pdf

When an interrupt occurs

Machine Previous Privilege (MPP)

When interrupt handler returns with mret
Machine Previous Privilege (MPP)

Switching privilege level
Kernel, as an interrupt handler,

can modify these 2 bits

In proc_yield()
static void proc_yield() {
 . . .
 if (curr_pid >= GPID_USER_START) {
 /* Modify mstatus.MPP to user mode */
 . . .
 } else {
 /* Modify mstatus.MPP to machine mode */
 . . .
 }
. . .
}

Memory protection
• Machine mode can access all memory regions.

• OS specifies which regions can be accessed by user mode.

• In P2, you will specify 4 PMP regions for user mode

• PMP stands for Physical Memory Protection

• Read section 3.6 of the RISC-V reference manual

How to read CPU manuals?

Total number of bits in this register

Bit index (0 .. 31)

WARL: Write any value; Read legal value

Consider memory address is 34 bits (and think of why);
This register holds the first 32 bits [33 : 2].

An example of reading Figure 3.25

Understanding the current PMP setup

 /* Setup a PMP region for the lowest 4GB address space */

 asm("csrw pmpaddr0, %0" : : "r" (0x40000000));
 asm("csrw pmpcfg0, %0" : : "r" (0xF));

The address encoded here is 0x4000_0000 << 2 == 0x1_0000_0000 (4GB)

PMP region0 is TOR (Top of Region), i.e., pmpaddr0 is the region top;
And it this region is enabled, readable, writable, executable.

Learn more in Figure 3.27 of the CPU manual.

Homework
• P2 is due on Oct 20

• Handle system calls using ecall

• Handle memory exceptions in kernel

• Setup memory protection using PMP

• Please remember to fill up the mid-term evaluation!

