P1: Implement a
Multi-Threading Package
(in user space)

Robbert van Renesse

Implement the following interface:

void thread _init();
* initialize the user-level threading module (process becomes a thread)

void thread create(void (*f)(void *arg), void *arg, unsigned int stack_size);
e create another thread that executes f(arg)

void thread_vyield();

* vield to another thread (thread scheduling is non-preemptive)

void thread_exit();
* thread terminates and yields to another thread or terminates entire process

Example usage

static void test_code (void *xarqg) {
int 1i;

for (1 = 0; 1 < 10; i++) {
printf ("%s here: %d\n", arg, 1i);
thread_yield();

}

printf ("$s done\n", arg);

int main(int argc, char *xxargv) {
thread_init () ;
thread_create (test_code, "thread 1", 16 x 1024);
thread_create (test_code, "thread 2", 16 x 1024);
test_code ("main thread");
thread_exit () ;
return 0;

You'll need to understand stacks *really well*

Review: stack (aka call stack)

int main(arge, argv)

PC/IP —>
/ f(3.14) FP

SP
}
int f(x){
é.();
|

int (¥ {

—

stack frame for
main()

>

Review: stack (aka call stack)

int main(arge, argv){

£(3.14)

} FP
SP
int f(x){
PC/IP —> -
g0;
}

int (¥ {

stack frame for
main()

stack frame for f()

Review: stack (aka call

stack)

stack frame for
main()

stack frame for f()

é
int main(arge, argv){ t
/
/
f(3.14) '
} FP —>
. SP >
int f(x){
PC/IP —> ***
80;
}

int (¥ {

arguments (3.14)

return address

saved FP (main)

local variables

saved registers

scratch space

Review: stack (aka call

stack)

int main(arge, argv){ t
/

stack frame for
main()

stack frame for f()

é.(); P —>

stack frame for g()

arguments (3.14)

return address

saved FP (main)

local variables

saved registers

scratch space

Review: stack (aka call

stack)

stack frame for
main()

stack frame for f()

é
int main(arge, argv){ t
/

/

f(3.14) '
} FP —>
. SP >
int f(x){

PC/IP —>€O;

}

int (¥ {

arguments (3.14)

return address

saved FP (main)

local variables

saved registers

scratch space

Review: stack (aka call stack)

int main(arge, argv){

f(3.14) FP

PC/IP —> .
}
int £f(x){
é.();
|

int (¥ {
}

—

stack frame for
main()

>

Fach thread has its own stack!!

Fach thread has its own stack!!

"process stack”

¥

thread 1 stack

¥

thread 2 stack

¥

Fach thread has its own stack!!

* And its own PC (aka IP), SP, FP,
general purpose registers

"process stack”

¥

thread 1 stack

¥

thread 2 stack

¥

But we have only one CPU, one core

* And the process has only one stack
We need some magic...

(where’s the thread?)

We run one thread at a time

e and save the state of the other threads in a secret
location

* The state of a thread (aka context) consists of
* its registers (including PC, SP, and FP)
* jts stack
e possibly more stuff (scheduling state)

Context Switching

* When a thread exist (thread exit) or yields (thread yield)
another thread, if any, gets to run

*If a thread yields, we need to save its context
* We need to be able to restore another context

Where to store the context of a thread?

* Convenient to push a thread’s registers onto the stack
* but you can’t save the stack pointer on the stack...

* Keep the stack pointer in a Thread Control Block
* one TCB per thread

Thread Control Block

stack frame

stack frame

SP

Thread Control Block
(initial state)

SP

BASE

Scheduling State of a Thread

* Running
e currently running

* Runnable (aka Ready)

* TCB on the run queue (aka ready queue)

* Terminated
* TCB marked as having terminated

thread init()

* Initializes thread package
* Maintains run queue and current thread

* Allocates a TCB, but *not™ a stack
* because process already has one in use

e Set TCB->base to NULL to mark no stack has been allocated
* Initial run queue is empty
* Current thread points to allocated TCB

thread create(f, arg, stack size)

 Create a new thread

* Allocates a TCB and a stack (of the given size)
* set TCB->base to “bottom”, and TCB->sp to “top”

* May or may not immediately switch to the new thread
* | think it’s easier if you switch immediately

thread vyield()

 See if the run queue is empty
 if so, we're done

* Get next TCB of the run queue
* Put current TCB on the run queue

* Switch contexts
» Save registers on the stack
* Save sp in current TCB
* Restore sp of next TCB
* Restore registers from the stack

thread exit()

 See if the run queue is empty
* if so, exit from the process using exit(0)

* Mark TERMINATED in TCB
* Get next TCB of the run queue

* Switch contexts
» Save registers on the stack
* Save sp in current TCB
* Restore sp of next TCB
* Restore registers from the stack

* Next thread cleans up last thread

ctx_switch(&old sp, new sp)

ctx_switch: //ip already pushed!
pushg %rbp

pushqg %rbx USAGE:
pushg %r15
(o)
pushg %rl14 struct tcb *current, *next;

pushq %r13
pushq %r12

pushq %r1l void yield(){
pushq %r10 assert(current->state == RUNNING);
pushq %r9 current->state = RUNNABLE;

pushq %r8
runQueue.add(current);

next = scheduler();
popq %r8 next->state = RUNNING;
popg %rd ctx_switch(¤t->sp, next->sp)

popq %rl0

popq %rl2 }
popq %rl3

popq %rl4

popqg %rl5

popq Y%rbx

popg %rbp

retq

Starting a new process

void thread_create(func){

pushq %rbp current->state = RUNNABLE;
pushg %rbx runQueue.add(current);
pushq %rl5 next = malloc(...);

pushq %rl4 next->func = func;

pushq %rl3 next->stack =malloc(...)
pushq %r12 next->state = RUNNING;
pushg %r11 ctx_start(¤t->sp,

ctx_start:

pushq %rl10 current = next;
pushq %r9 }
pushq %r8 void ctx_entry(){

current = next;
(*current->func)();

callg ctx_entry current->state = FINISHED;
finishedQueue.add(current);
next = scheduler();
next->state = RUNNING;
ctx_switch(¤t->sp, next->sp)
// this location cannot be reached

Synchronization Primitives

Semaphores

* We’re not teaching general semaphores in CS4410 anymore

* A semaphore is a kind of counter:
struct sema;
void sema _1nit(struct sema *sema, unsigned int count);
void sema_dec(struct sema *sema);
void sema_inc(struct sema *sema);
bool sema release(struct sema *sema);

Semaphore interface

void sema _init(struct sema *sema, unsigned int count)
* Initialize the semaphore to the given counter

void sema dec(struct sema *sema)

* Wait until sema > 0, then decrement semaphore

void sema _inc(struct sema *sema)

* Increment the semaphore

bool sema release(struct sema *sema)

* Release the semaphore

Example usage: Producer/Consumer

bounded consumers

producers butter

out

D
=)
D

D
= OO
-

Producers block Consumers block
when buffer is full when buffer is empty

Example usage: Producer/Consumer

#define NSLOTS 3

static struct sema s_empty, s_full, s_lock;
static unsigned int 1in, out;
static char *slots[NSLOTS];

int main(int argc, char xxargv) {
thread_init () ;
sema_init (&s_lock, 1);
sema_init (&s_full, 0);
sema_init (&s_empty, NSLOTS);

thread_create (consumer, "consumer 1", 16 = 1024);
producer ("producer 1");
return 0;

Example usage: Producer/Consumer

static void producer (void xarqg) {
foxr (e |
// first make sure there’s an empty slot.
sema_dec (&s_empty) ;

// now add an entry to the queue
sema_dec (&s_lock) ;

slots[in++] = arg;

i1f (in == NSLOTS) in = 0;
sema_inc (&s_lock) ;

// finally, signal consumers
sema_inc (&s_full);

Example usage: Producer/Consumer

static void consumer (void *arqg) {
unsigned int 1i;

for (1 = 0; i1 < 5; i++) {
// first make sure there’s something in the buffer
sema_dec (&s_full);

// now grab an entry to the queue
sema_dec (&s__lock);

void *x = slots[out++];
printf ("%s: got: %8’ \n"; arg; x)i;
1f (out == NSLOTS) out = 0;

sema_inc (&s_lock) ;

// finally, signal producers
sema_inc (&s_empty) ;

Semaphore implementation

* Associate a queue with the semaphore

* If thread tries to decrement a zero semaphore, put its TCB on the
gueue

* If thread increments a semaphore with a non-empty queue, don’t
increment the semaphore but move one TCB from the semaphore’s
gueue to the read queue

EGOS (Earth and Grass O.S.)

Overview

* Runs as a process in user space on Linux, Mac OS X, ...
e as long as it supports mmap()

e Architecture:
e Earth: a virtual machine monitor (like VMWare, VirtualBox, KVM, ...)

* Grass: a microkernel operating system
* microkernel: file system etc. runs mostly in user space

Earthbox

* Emulates a computer

* Interrupts
* TLB
e Devices (disks, tty, clock, etc.)

* Sets up the address spaces for Grass kernel and EGOS processes
* Then context switches to Grass kernel

Grass Microkernel

* Organized as a collection of processes
e processes communicate through exchanging messages
e process can only block by waiting for a message

* Some are purely kernel processes, some support user space

* Device drivers are implemented as kernel processes
* invoke Earth’s virtual devices

* Main file system implemented in user space
e asimple file system implemented in kernel space for booting

Address Space Regions

real kernel space —

real user space -

OXFFFFFFFFFFFF

Ox800000000000

OXO0200FFFFFFF
Ox002000000000

OXOO01000FFFFFF
Ox0010000000060

Ox000000000000

Host Kernel (Linux, MacOSX, ...)

Grass Microkernel

EGOS processes

Earthbox virtual machine monitor

} fake kernel space

} fake user space

Very very small system call interface

* sys getpid()

* sys_recv(&message)

* sys_send(message)

* sys_rpc(request, &response)
* sys_exit(status)

* sys gettime()

* sys_print(string)

Other O.S. services

®* Spawn a process:
* send request to kernel spawn server

* read/write/create a file:

* send request to one of the file servers
* print something:

* send request to kernel tty server

* read from keyboard:
* send request to kernel tty server

