
Layered Block-Structured File
System

Robbert van Renesse

1

2

Intro

• Underneath any file system, database system,
etc. there are one or more block stores

• A block store provides a disk-like interface:
– an storage object is a sequence of blocks
• typically a few kilobytes

– you can read or write a block at a time

• The block store abstraction doesn’t deal with
file naming, security, etc., just storage

3

EGOS Storage Architecture

4

dirsvr bfs blocksvr syncsvr

ramfile fs.dev page.dev

app2app1
user
space

kernel
space

dirsvr: directory server
• Maps path names to “i-node numbers”
• Each directory is a file that maintains an array of

simple-name à i-node number mappings
– e.g., { x.txt: 34, y.dir: 54, z.exe: 4 }

• Directories can be organized into graphs (usually trees)
• Root directory is global
• Each process has a working directory
• Can recursively resolve “a/b/x.txt”
– looks up a.dir in working directory
– looks up b.dir in a
– looks up x.txt in b

5

bfs: block file server

• Stores all its user and meta data in blocksvr
• Maintains, for each file an “i-node”:
– size in bytes
– owner
– modification time
– access control information
– etc.

• i-nodes are indexed by an i-node number
– 0, 1, 2, …
– #i-nodes determined by blocksvr

6

Block Store Abstraction
• A block store consists of a collection of i-nodes
• Each i-node is a finite sequence of blocks
• Simple interface:

– block_t block
• block of size BLOCK_SIZE

– getninodes() à integer
• returns the number of i-nodes on this block store

– getsize(inode number) à integer
• returns the number of of block on the given inode

– setsize(inode number, nblocks)
• set the number of blocks on the given inode

– release()
• give up reference to the block store

7

Block Store Abstraction, cont’d

– read(inode, block number) à block
• returns the contents of the given block number

– write(inode, block number, block)
• writes the block contents at the given block number

– sync(inode)
• make sure all blocks are persistent

– if inode == -1, then all blocks on all inodes

8

Simple block stores

• “filedisk”: a simulated disk stored on a Posix
file
– block_if bif = filedisk_init(char *filename, int nblocks)
– has only a single i-node (0)

• “ramdisk”: a simulated disk in memory
– block_if bif = ramdisk_init(block_t *blocks, nblocks)
• Fast but volatile

• block_if is a pointer to the block interface

9

Example code
#include ...
#include “h/egos/block_store.h”

int main(){
block_if disk = filedisk_init(“disk.dev”, 1024);
block_t block;
strcpy(block.bytes, “Hello World”);
(*disk->write)(disk, 0, 0, &block);
(*disk->release)(disk);
return 0;

}

10

Block Stores can be Layered!

Each layer presents a block_if abstraction

CACHEDISK

STATDISK

FILEDISK

block_if

keeps a cache of recently
used blocks

keeps track of #reads and
#writes for statistics

keeps blocks in a Posix file

11

Example code with layers
#define CACHE_SIZE 10 // #blocks in cache

block_t cache[CACHE_SIZE];

int main(){
block_if disk = filedisk_init(“disk.dev”, 1024);
block_if sdisk = statdisk_init(disk);
block_if cdisk = cachedisk_init(sdisk, cache, CACHE_SIZE);

block_t block;
strcpy(block.bytes, “Hello World”);
(*cdisk->write)(cdisk, 0, 0, &block);
(*cdisk->release)(cdisk);
(*sdisk->release)(sdisk);
(*disk->release)(disk);

return 0;
}

12

Example Layers
block_if clockdisk_init(block_if below,

block_t *blocks, block_no nblocks);
// implements CLOCK cache allocation / eviction

block_if statdisk_init(block_if below);
// counts all reads and writes

block_if debugdisk_init(block_if below, char *descr);
// prints all reads and writes

block_if checkdisk_init(block_if below);
// checks that what’s read is what was written

13

How to write a layer
struct statdisk_state {

block_if below; // block store below
unsigned int nread, nwrite; // stats

};

block_if statdisk_init(block_if below){
struct statdisk_state *sds = calloc(1, sizeof(*sds));
sds->below = below;

block_if bi = calloc(1, sizeof(*bi));
bi->state = sds;
bi->getsize = statdisk_nblocks;
bi->setsize = statdisk_setsize;
bi->read = statdisk_read;
bi->write = statdisk_write;
bi->release = statdisk_release;
return bi;

}
14

statdisk implementation, cont’d
static int statdisk_read(block_if bi, unsigned int ino, block_no offset,
block_t *block){

struct statdisk_state *sds = bi->state;
sds->nread++;
return (*sds->below->read)(sds->below, offset, block);

}

static int statdisk_write(block_if bi, unsigned int ino, block_no offset,
block_t *block){

struct statdisk_state *sds = bi->state;
sds->nwrite++;
return (*sds->below->write)(sds->below, offset, block);

}

static int statdisk_getsize(block_if bi){ ... }
static int statdisk_setsize(block_if bi, block_no nblocks){ ... }

static void statdisk_release(block_if bi){
free(bi->state);
free(bi);

}
15

RAID 0

DISK

RAID0-DISK

CACHEDISK

DISKDISK DISK

block_if raid0disk_init(block_if *below, unsigned int nbelow);

16

RAID 0+1

DISK

RAID0-DISK

RAID1-DISK

DISKDISK DISK

RAID0-DISK

17

block_if raid1disk_init(block_if *below, unsigned int nbelow);

RAID 1+0

DISK

RAID1-DISK

RAID0-DISK

DISKDISK DISK

RAID1-DISK

18

Multiplexing

• A single block store can be “multiplexed”,
offering multiple virtual block stores
– opposite of RAID

• One way is simply partitioning the underlying
block store into multiple disjoint sections
– partdisk

19

Partitioning: Cactus Stack

PARTDISK(0-255)

CACHEDISK

DISK (1024)

CACHEDISK STATDISK

CHECKDISK

PARTDISK(256-511) PARTDISK(512-1023)

block_if partdisk_init(block_if below, block_no offset,
block_no nblocks);

20

In general, layers form a Directed Acyclic Graph

Sharing a Block Store

• One could create multiple partitions, one for
each file, but that has very similar problems to
partitioning physical memory among
processes

• You want something similar to paging
– more efficient and flexible sharing
– techniques are very similar!

21

Partitioning with treedisk
• treedisk is a file system, somewhat similar to Unix file

systems
• Offers multiple virtual block stores
• The underlying block store is partitioned into three

sections:
1. superblock

• at block #0
2. a fixed number of i-node blocks

• start at block #1
• the number is given in the superblock

3. the remaining blocks
• start at 1 + #i-node blocks
• data blocks, free blocks, indirect blocks, freelist blocks

22

P3: Implement a cache layer

• Suggested: based on clock algorithm
• Two versions:

1. write-through
2. write-behind aka write-back

• Tricky part: what to do if cache is full?

23

• To allocate a block,
inspect the use bit in
the PTE at clock hand
and advance clock
hand

• Used? Clear use bit
and repeat

Clock Algorithm

24

cache entries

