
P1: Implement a
Multi-Threading Package

(in user space)
Robbert van Renesse

Implement the following interface:

void thread_init();
• initialize the user-level threading module (process becomes a thread)

void thread_create(void (*f)(void *arg), void *arg, unsigned int stack_size);
• create another thread that executes f(arg)

void thread_yield();
• yield to another thread (thread scheduling is non-preemptive)

void thread_exit();
• thread terminates and yields to another thread or terminates entire process

Example usage

You’ll need to understand stacks *really well*

Review: stack (aka call stack)

5

int main(argc, argv){
…
f(3.14)
…

}

int f(x){
…
g();
…

}

int g(y){
…

}

stack frame for
main()

PC/IP

SP

FP

Review: stack (aka call stack)

6

int main(argc, argv){
…
f(3.14)
…

}

int f(x){
…
g();
…

}

int g(y){
…

}

stack frame for
main()

stack frame for f()

PC/IP

SP

FP

Review: stack (aka call stack)

7

int main(argc, argv){
…
f(3.14)
…

}

int f(x){
…
g();
…

}

int g(y){
…

}

stack frame for
main()

stack frame for f()

SP

FP

arguments (3.14)

return address

local variables

saved registers

saved FP (main)

scratch space

PC/IP

Review: stack (aka call stack)

8

int main(argc, argv){
…
f(3.14)
…

}

int f(x){
…
g();
…

}

int g(y){
…

}

stack frame for
main()

stack frame for f()

stack frame for g()

PC/IP

SP

FP

arguments (3.14)

return address

local variables

saved registers

saved FP (main)

scratch space

Review: stack (aka call stack)

9

int main(argc, argv){
…
f(3.14)
…

}

int f(x){
…
g();
…

}

int g(y){
…

}

stack frame for
main()

stack frame for f()

PC/IP

SP

FP

arguments (3.14)

return address

local variables

saved registers

saved FP (main)

scratch space

Review: stack (aka call stack)

10

int main(argc, argv){
…
f(3.14)
…

}

int f(x){
…
g();
…

}

int g(y){
…

}

stack frame for
main()PC/IP

SP

FP

Each thread has its own stack!!

Each thread has its own stack!!
”process stack”

thread 1 stack

thread 2 stack

•And its own PC (aka IP), SP, FP,
general purpose registers

Each thread has its own stack!!
”process stack”

thread 1 stack

thread 2 stack

•And the process has only one stack

We need some magic…

(where’s the thread?)

But we have only one CPU, one core

•and save the state of the other threads in a secret
location
•The state of a thread (aka context) consists of
• its registers (including PC, SP, and FP)
• its stack
• possibly more stuff (scheduling state)

We run one thread at a time

•When a thread exist (thread_exit) or yields (thread_yield)
another thread, if any, gets to run
• If a thread yields, we need to save its context
•We need to be able to restore another context

Context Switching

Where to store the context of a thread?

• Convenient to push a thread’s registers onto the stack
• but you can’t save the stack pointer on the stack…

• Keep the stack pointer in a Thread Control Block
• one TCB per thread

Thread Control Block
stack frame

stack frameSP

BASE saved registers

Thread Control Block
(initial state)

SP

BASE

Scheduling State of a Thread

• Running
• currently running

• Runnable (aka Ready)
• TCB on the run queue (aka ready queue)

• Terminated
• TCB marked as having terminated

thread_init()

• Initializes thread package
• Maintains run queue and current thread
• Allocates a TCB, but *not* a stack
• because process already has one in use

• Set TCB->base to NULL to mark no stack has been allocated
• Initial run queue is empty
• Current thread points to allocated TCB

thread_create(f, arg, stack_size)

• Create a new thread
• Allocates a TCB and a stack (of the given size)
• set TCB->base to “bottom”, and TCB->sp to “top”

• May or may not immediately switch to the new thread
• I think it’s easier if you switch immediately

thread_yield()

• See if the run queue is empty
• if so, we’re done

• Get next TCB of the run queue
• Put current TCB on the run queue
• Switch contexts
• Save registers on the stack
• Save sp in current TCB
• Restore sp of next TCB
• Restore registers from the stack

thread_exit()

• See if the run queue is empty
• if so, exit from the process using exit(0)

• Mark TERMINATED in TCB
• Get next TCB of the run queue
• Switch contexts
• Save registers on the stack
• Save sp in current TCB
• Restore sp of next TCB
• Restore registers from the stack

• Next thread cleans up last thread

ctx_switch(&old_sp, new_sp)

25

USAGE:

struct tcb *current, *next;

void yield(){
assert(current->state == RUNNING);
current->state = RUNNABLE;
runQueue.add(current);
next = scheduler();
next->state = RUNNING;
ctx_switch(¤t->sp, next->sp)
current = next;

}

ctx_switch: // ip already pushed!
pushq %rbp
pushq %rbx
pushq %r15
pushq %r14
pushq %r13
pushq %r12
pushq %r11
pushq %r10
pushq %r9
pushq %r8
movq %rsp, (%rdi)
movq %rsi, %rsp
popq %r8
popq %r9
popq %r10
popq %r11
popq %r12
popq %r13
popq %r14
popq %r15
popq %rbx
popq %rbp
retq

Starting a new process

26

ctx_start:
pushq %rbp
pushq %rbx
pushq %r15
pushq %r14
pushq %r13
pushq %r12
pushq %r11
pushq %r10
pushq %r9
pushq %r8
movq %rsp, (%rdi)
movq %rsi, %rsp
callq ctx_entry

void thread_create(func){
current->state = RUNNABLE;
runQueue.add(current);
next = malloc(…);
next->func = func;
next->stack = malloc(…)
next->state = RUNNING;
ctx_start(¤t->sp, top_of_stack)
current = next;

}

void ctx_entry(){
current = next;
(*current->func)();
current->state = FINISHED;
finishedQueue.add(current);
next = scheduler();
next->state = RUNNING;
ctx_switch(¤t->sp, next->sp)
// this location cannot be reached

}

Synchronization Primitives

Semaphores

• We’re not teaching general semaphores in CS4410 anymore
• A semaphore is a kind of counter:

struct sema;
void sema_init(struct sema *sema, unsigned int count);
void sema_dec(struct sema *sema);
void sema_inc(struct sema *sema);
bool sema_release(struct sema *sema);

Semaphore interface

void sema_init(struct sema *sema, unsigned int count)

• Initialize the semaphore to the given counter
void sema_dec(struct sema *sema)

• Wait until sema > 0, then decrement semaphore
void sema_inc(struct sema *sema)

• Increment the semaphore
bool sema_release(struct sema *sema)

• Release the semaphore

Example usage: Producer/Consumer

in

out

producers
consumers

Producers block
when buffer is full

bounded
buffer

Consumers block
when buffer is empty

Example usage: Producer/Consumer

Example usage: Producer/Consumer

Example usage: Producer/Consumer

Semaphore implementation

• Associate a queue with the semaphore
• If thread tries to decrement a zero semaphore, put its TCB on the

queue
• If thread increments a semaphore with a non-empty queue, don’t

increment the semaphore but move one TCB from the semaphore’s
queue to the read queue

EGOS (Earth and Grass O.S.)

Overview

• Runs as a process in user space on Linux, Mac OS X, …
• as long as it supports mmap()

• Architecture:
• Earth: a virtual machine monitor (like VMWare, VirtualBox, KVM, …)
• Grass: a microkernel operating system

• microkernel: file system etc. runs mostly in user space

Earthbox

• Emulates a computer
• Interrupts
• TLB
• Devices (disks, tty, clock, etc.)

• Sets up the address spaces for Grass kernel and EGOS processes
• Then context switches to Grass kernel

Grass Microkernel

• Organized as a collection of processes
• processes communicate through exchanging messages
• process can only block by waiting for a message

• Some are purely kernel processes, some support user space
• Device drivers are implemented as kernel processes
• invoke Earth’s virtual devices

• Main file system implemented in user space
• a simple file system implemented in kernel space for booting

Address Space Regions

Host Kernel (Linux, MacOSX, …)

Grass Microkernel

EGOS processes

Earthbox virtual machine monitor

0x000000000000

0x800000000000

0xFFFFFFFFFFFF

0x001000000000

0x002000000000

0x001000FFFFFF

0x00200FFFFFFF

real kernel space

real user space

fake user space

fake kernel space

Very very small system call interface

• sys_getpid()
• sys_recv(&message)
• sys_send(message)
• sys_rpc(request, &response)
• sys_exit(status)
• sys_gettime()
• sys_print(string)

Other O.S. services

• spawn a process:
• send request to kernel spawn server

• read/write/create a file:
• send request to one of the file servers

• print something:
• send request to kernel tty server

• read from keyboard:
• send request to kernel tty server

• …

