P1: Implement a Multi-Threading Package (in user space)

Robbert van Renesse

Implement the following interface:

void thread_init();

• initialize the user-level threading module (process becomes a thread)

void thread_create(void (*f)(void *arg), void *arg, unsigned int stack_size);

• create another thread that executes f(arg)

void thread_yield();

• yield to another thread (thread scheduling is non-preemptive)

void thread_exit();

• thread terminates and yields to another thread or terminates entire process

Example usage

```
static void test_code(void *arg) {
    int i;
    for (i = 0; i < 10; i++) {
        printf("%s here: %d\n", arg, i);
       thread_yield();
   printf("%s done\n", arg);
}
int main(int argc, char **argv) {
   thread_init();
    thread_create(test_code, "thread 1", 16 * 1024);
    thread_create(test_code, "thread 2", 16 * 1024);
    test_code("main thread");
    return 0;
```

You'll need to understand stacks *really well*

Each thread has its own stack!!

Each thread has its own stack!!

Each thread has its own stack!!

• And its own PC (aka IP), SP, FP, general purpose registers

But we have only one CPU, one core

And the process has only one stack

We need some magic...

(where's the thread?)

We run one thread at a time

- and save the state of the other threads in a secret location
- The state of a thread (aka context) consists of
 - its registers (including PC, SP, and FP)
 - its stack
 - possibly more stuff (scheduling state)

Context Switching

- When a thread exist (thread_exit) or yields (thread_yield) another thread, if any, gets to run
- If a thread yields, we need to save its context
- We need to be able to restore another context

Where to store the context of a thread?

- Convenient to push a thread's registers onto the stack
 - but you can't save the stack pointer on the stack...
- Keep the stack pointer in a *Thread Control Block*
 - one TCB per thread

Scheduling State of a Thread

• Running

- currently running
- Runnable (aka Ready)
 - TCB on the run queue (aka ready queue)
- Terminated
 - TCB marked as having terminated

thread_init()

- Initializes thread package
- Maintains run queue and current thread
- Allocates a TCB, but *not* a stack
 - because process already has one in use
- Set TCB->base to NULL to mark no stack has been allocated
- Initial run queue is empty
- Current thread points to allocated TCB

thread_create(f, arg, stack_size)

- Create a new thread
- Allocates a TCB and a stack (of the given size)
 - set TCB->base to "bottom", and TCB->sp to "top"
- May or may not immediately switch to the new thread
 - I think it's easier if you switch immediately

thread_yield()

- See if the run queue is empty
 - if so, we're done
- Get next TCB of the run queue
- Put current TCB on the run queue

Switch contexts

- Save registers on the stack
- Save sp in current TCB
- Restore sp of next TCB
- Restore registers from the stack

thread_exit()

- See if the run queue is empty
 - if so, exit from the process using exit(0)
- Mark TERMINATED in TCB
- Get next TCB of the run queue

Switch contexts

- Save registers on the stack
- Save sp in current TCB
- Restore sp of next TCB
- Restore registers from the stack
- Next thread cleans up last thread

ctx switch(&old_sp, new_sp)

ctx_switch: // ip already pushed!

pushq	%rbp
pushq	%rbx
pushq	%r15
pushq	%r14
pushq	%r13
pushq	%r12
pushq	%r11
pushq	%r10
pushq	%r9
pushq	%r8
movq	%rsp, (%rdi)
movq	%rsi, %rsp
popq	%r8
popq	%r9
popq	%r10
popq	%r11
popq	%r12
popq	%r13
popq	%r14
popq	%r15
popq	%rbx
popq	%rbp
retq	

USAGE:

struct tcb *current, *next;

void yield(){

assert(current->state == RUNNING); current->state = RUNNABLE; runQueue.add(current); next = scheduler(); next->state = RUNNING; ctx_switch(¤t->sp, next->sp) current = next;

Starting a new process

ctx_start: pushq %rbp pushq %rbx pushq %r15 pushq %r14 pushq %r13 pushq %r12 pushq %r11 pushq %r10 pushq %r9 pushq %r8 movq %rsp, (%rdi) movq %rsi, %rsp callq ctx_entry

void thread_create(func){
 current->state = RUNNABLE;
 runQueue.add(current);
 next = malloc(...);
 next->func = func;
 next->stack = malloc(...)
 next->state = RUNNING;
 ctx_start(¤t->sp, top_of_stack)
 current = next;

void ctx_entry(){
 current = next;
 (*current->func)();
 current->state = FINISHED;
 finishedQueue.add(current);
 next = scheduler();
 next->state = RUNNING;
 ctx_switch(¤t->sp, next->sp)
 // this location cannot be reached

Synchronization Primitives

Semaphores

- We're not teaching general semaphores in CS4410 anymore
- A semaphore is a kind of counter:

struct sema;

- void sema_init(struct sema *sema, unsigned int count);
- void sema_dec(struct sema *sema);
- void sema_inc(struct sema *sema);
- bool sema_release(struct sema *sema);

Semaphore interface

void sema_init(struct sema *sema, unsigned int count)

• Initialize the semaphore to the given counter

void sema_dec(struct sema *sema)

• Wait until sema > 0, then decrement semaphore

void sema_inc(struct sema *sema)

• Increment the semaphore

bool sema_release(struct sema *sema)

• Release the semaphore

Example usage: Producer/Consumer

Producers block when buffer is full Consumers block when buffer is empty

Example usage: Producer/Consumer

```
#define NSLOTS 3
```

```
static struct sema s_empty, s_full, s_lock;
static unsigned int in, out;
static char *slots[NSLOTS];
```

```
int main(int argc, char **argv){
   thread_init();
   sema_init(&s_lock, 1);
   sema_init(&s_full, 0);
   sema_init(&s_empty, NSLOTS);
```

```
thread_create(consumer, "consumer 1", 16 * 1024);
producer("producer 1");
return 0;
```

Example usage: Producer/Consumer

```
static void producer(void *arg) {
    for (;;) {
        // first make sure there's an empty slot.
        sema_dec(&s_empty);
        // now add an entry to the queue
        sema_dec(&s_lock);
        slots[in++] = arg;
        if (in == NSLOTS) in = 0;
        sema_inc(&s_lock);
        // finally, signal consumers
        sema_inc(&s_full);
```

Example usage: Producer/Consumer

```
static void consumer(void *arg){
    unsigned int i;
```

```
for (i = 0; i < 5; i++) {
    // first make sure there's something in the buffer
    sema_dec(&s_full);</pre>
```

```
// now grab an entry to the queue
sema_dec(&s_lock);
void *x = slots[out++];
printf("%s: got '%s'\n", arg, x);
if (out == NSLOTS) out = 0;
sema_inc(&s_lock);
```

```
// finally, signal producers
sema_inc(&s_empty);
```

Semaphore implementation

- Associate a queue with the semaphore
- If thread tries to decrement a zero semaphore, put its TCB on the queue
- If thread increments a semaphore with a non-empty queue, don't increment the semaphore but move one TCB from the semaphore's queue to the read queue

EGOS (Earth and Grass O.S.)

Overview

- Runs as a process in user space on Linux, Mac OS X, ...
 - as long as it supports mmap()
- Architecture:
 - Earth: a virtual machine monitor (like VMWare, VirtualBox, KVM, ...)
 - Grass: a microkernel operating system
 - microkernel: file system etc. runs mostly in user space

Earthbox

- Emulates a computer
 - Interrupts
 - TLB
 - Devices (disks, tty, clock, etc.)
- Sets up the address spaces for Grass kernel and EGOS processes
- Then context switches to Grass kernel

Grass Microkernel

- Organized as a collection of processes
 - processes communicate through exchanging messages
 - process can only block by waiting for a message
- Some are purely kernel processes, some support user space
- Device drivers are implemented as kernel processes
 - invoke Earth's virtual devices
- Main file system implemented in user space
 - a simple file system implemented in kernel space for booting

Address Space Regions

Very very small system call interface

- sys_getpid()
- sys_recv(&message)
- sys_send(message)
- sys_rpc(request, &response)
- sys_exit(status)
- sys_gettime()
- sys_print(string)

Other O.S. services

- spawn a process:
 - send request to kernel spawn server
- read/write/create a file:
 - send request to one of the file servers
- print something:
 - send request to kernel tty server
- read from keyboard:
 - send request to kernel tty server

•