\

OS and proces

?E;,J(Z

‘Spﬂngzozo

4

=
T



Announcements

* EGOS source code update
* Cornell Undergraduate Research advertisements



MARCH 1ST KLARMAN HALL
- uro_comell 3 pM KG?O

S § CU
t11 curb.cornell.edu B

facebook com/cornellcurb Questions? Contact jg999@cornell.edu Presented by ",




Cornell Undergraduate Research Board
invites you'to apply to present at

Spring
Symposium

-
K =

¥
:

Cornell’s largest
undergraduate research
event

K -

Wednesday, April 15, 2020 \ ?
5.7 PM \ O

- |

Submit your research by
Friday, March 20, 2020
11:59:59 PM EST to
TINYURL.COM/CURB2020



Outline for Today

* EGOS Concepts
Kernel and user processes
Message passing

* Process.c overview



EGOS: A Microkernel

OS services

A
\
server

User processes
A

User Block

mode server
Kernel Spawn
mode server

Gate TTY Ramfile
server server server
Y

Kernel processes



Message Passing

* Processes communicate by sending messages
* Most system calls are actually message request/reply pairs

send(spawn_request)

shell

mt

4

i /
Spawn

proc_create uid()

send(spawn_reply) server




[/O with Messages

* Reading a file: standard example of “waiting for I/O”

req: read file req: read block
user BES Block req: read block
proc . ) server
‘ reply: file : reply: block

reply: block

Disk _
server disk I8




Message System Calls

int sys send(gpid t pid, enum msg type mtype,
const void *msg, unsigned int size);

Send a message to process ID pid, with contents in buffer *msg of
size size. Message type mtype is either REQUEST or REPLY.

int sys _recv(enum msg type mtype, unsigned int
max_time, void *msg, unsigned int size, gpid t
*src, unsigned int *uid);

Block and wait for a message of type mtype for at most max_time

ms. The message will be placed in *msg, the sender’s process ID

and user ID will be placed in *src and *uid



Message System Calls

int sys rpc(gpid t pid, const void *request,
unsigned int reqsize, void *reply,
unsigned int repsize);
Send a message to process pid and immediately block until a reply
is received. The reply will be placed in *reply.



Outline for Today

* EGOS Concepts
Kernel and user processes
Message passing

* Process.c overview



Public Interface of process.c

gpid t proc_create uid(gpid t owner, char *descr,
void (*fun)(void *), void *arg, unsigned int uid);

Creates a new process with parent owner, which will run function
fun with argument arg. User ID o indicates root.

void proc_kill(gpid t killer, gpid t pid, int status);
Kills process pid, giving it exit status status, provided killeris
allowed to kill that process.

void proc_dump();

Prints out status of all running processes - the ctrl-L command



Message Passing Functions

bool proc_recv(enum msg type mtype, unsigned int
max_time, void *contents, unsignhed int *psize,
gpid t *psrc, unsigned int *puid);

Implements sys_recv(). Waits for a message to be delivered to one

) €

of this process’s “mailboxes”

bool proc_send(gpid t src _pid, unsigned int
src_uid, gpid t dst pid, enum msg type mtype,
const void *contents, unsigned int size);

Implements sys_send(). Can be called by the kernel in an interrupt
handler, so not necessarily a send from the current process



Process.c Memory Management

Design decision: Don’t spend time allocating/freeing PCBs during
normal execution

All PCBs statically allocated at boot time:
static struct process proc_set] 1;

PCBs marked as “free” with state = PROC_FREE;
On proc_alloc(), grab a free PCB from the free list, zero it out
On proc_release(), mark PCB as free and return it to free list



Let’s Look at Some Code



