
EGOS and process.c
CS 4411

Spring 2020



Announcements
• EGOS source code update

• Cornell Undergraduate Research advertisements







Outline for Today
• EGOS Concepts

• Kernel and user processes

• Message passing

• Process.c overview



EGOS: A Microkernel

Spawn 
server

Gate 
server

Kernel 
mode

User 
mode

TTY 
server

Block 
server

BFS
Dir 

server

Ramfile
server

init shell mt

OS services

Kernel processes

User processes



Message Passing
• Processes communicate by sending messages

• Most system calls are actually message request/reply pairs

Spawn 
server

shell mt
send(spawn_request)

send(spawn_reply)
proc_create_uid()



reply: block

I/O with Messages
• Reading a file: standard example of “waiting for I/O”

reply: file

req: read block

user 
proc

BFS
Block 
server

Disk 
server

req: read file

req: read block

disk I/O
reply: block



Message System Calls
int sys_send(gpid_t pid, enum msg_type mtype, 

const void *msg, unsigned int size);

Send a message to process ID pid, with contents in buffer *msg of 
size size. Message type mtype is either REQUEST or REPLY.

int sys_recv(enum msg_type mtype, unsigned int
max_time, void *msg, unsigned int size, gpid_t
*src, unsigned int *uid);

Block and wait for a message of type mtype for at most max_time
ms. The message will be placed in *msg, the sender’s process ID 
and user ID will be placed in *src and *uid



Message System Calls
int sys_rpc(gpid_t pid, const void *request,

unsigned int reqsize, void *reply, 
unsigned int repsize);

Send a message to process pid and immediately block until a reply 
is received. The reply will be placed in *reply.



Outline for Today
• EGOS Concepts

• Kernel and user processes

• Message passing

• Process.c overview



Public Interface of process.c
gpid_t proc_create_uid(gpid_t owner, char *descr, 

void (*fun)(void *), void *arg, unsigned int uid);

Creates a new process with parent owner, which will run function 
fun with argument arg. User ID 0 indicates root.

void proc_kill(gpid_t killer, gpid_t pid, int status);

Kills process pid, giving it exit status status, provided killer is 
allowed to kill that process.

void proc_dump();

Prints out status of all running processes – the ctrl-L command



Message Passing Functions
bool proc_recv(enum msg_type mtype, unsigned int 

max_time, void *contents, unsigned int *psize, 
gpid_t *psrc, unsigned int *puid);

Implements sys_recv(). Waits for a message to be delivered to one 
of this process’s “mailboxes”

bool proc_send(gpid_t src_pid, unsigned int 
src_uid, gpid_t dst_pid, enum msg_type mtype, 
const void *contents, unsigned int size);

Implements sys_send(). Can be called by the kernel in an interrupt 
handler, so not necessarily a send from the current process



Process.c Memory Management
• Design decision: Don’t spend time allocating/freeing PCBs during 

normal execution

• All PCBs statically allocated at boot time:
static struct process proc_set[MAX_PROCS];

• PCBs marked as “free” with state = PROC_FREE;

• On proc_alloc(), grab a free PCB from the free list, zero it out

• On proc_release(), mark PCB as free and return it to free list



Let’s Look at Some Code


