Pro]ect 2 Interrupts
and Scheduhng

f- CS44TI ' ' (

_Spnngzozo



Announcements

» Office hours
* Regrades
* Plazza



Outline for Today

* Arrays and Stacks
* Project 2 Overview

* Interrupt Handling
Privilege Modes
Timer Interrupts

* Scheduling with Quanta



On P1: A Note About Stacks

OXFFFFFFFF
* Standard process layout: Stack “grows
downward” L 1
* What does this mean? Eﬂ?\)
* push instruction: ;
push v

* Decrements SP
* Stores register to memory at SP

* pop instruction:
- Reads memory at SP into register Heap

Virtual addresses
* Increments SP i Data

Ox00000000 Code




Compare to Arrays

* Arraysin C are contiguous memory
* Array index is really pointer addition arr + 3 * sizeof(int)
* Array variable is a pointer to first element

int[4] arr;

arr[o] arr[1l] arr[2] arr[3]
Clgal OX6FAAQQ

QOVYVY49X0
7ovVv49X0
80VYV49X0
JOVYV49X0
OTVV49X0



Arrays vs. Stacks

int[4] arr; arr[o] arr[1] arr[2] arr[3]

QOVYVY49X0
7OvVv49X0
80VYV49X0
JOVYV19X0
OTVV49X0

stack Register 4 Register3 Register2 Register1




malloc() Behavior

* malloc() isanaturalfit for arrays: it returns a pointer to the
lowest memory address in the allocated region

int* arr = malloc(4 * sizeof(int));

OxX6FAAQQ Ox6FAA10

* Is this what you want for a thread/process’s stack?
(Can you use arr as a stack pointer?)



Outline

Arrays and Stacks
Project 2 Overview

Interrupt Handling
Privilege Modes
Timer Interrupts

Scheduling with Quanta



Project 2 Basics

* EGOS has a scheduler, but it’s not very good

Round-robin algorithm
FIFO run queue, timer interrupts force yield
* Replace scheduling logic with Multi-Level Feedback Queue
* Measure quality of new scheduler
Each process’s completion time and number of yields
Overall average CPU load



Project 2 Logistics

One file to edit: src/grass/process.c

When you make changes, keep the original code, and use a
macro to select whether new or old code is compiled:
#ifdef

proc_next = mlfq _get next(&run_queue, level);é////’
#else

proc_next = queue_get(&proc_runnable); <
#endif

If COMMONEFLAGS in Makefile.common includes -DHW_MLFQ
your code will be used, otherwise original code will be used



Concepts in Project 2

Interrupt handling

Context switches (again)

Process blocking and 1/O

Scheduling decisions and bookkeeping



Outline

Arrays and Stacks
Project 2 Overview

Interrupt Handling
Privilege Modes
Timer Interrupts

Scheduling with Quanta



Essentials of Interrupt Handling

* Hardware-assisted
* Interrupt Vector selects
where CPU jumps

* In a fixed, known
location, has an entry for

Interrupt

each type of interrupt g ==kl Handler

* Forced context switch

Memory



Privileges

* Interrupt handling is a privileged operation
HW sets kernel-mode bit

* Interrupt handlers are part of kernel
* After interrupt handler runs, return control to user process

User mode

Kernel mode v/- v-

N

Disk interrupt handler

Keyboard interrupt handler



Memory Layout

* When interrupt happens, some other process
IS running

* To switch to interrupt handler, kernel
memory must also be mapped in process’s
address space

* Otherwise, how would you get to interrupt
handler’s code?




Memory Layout

* Interrupt handleris a program, needs a stack

* Where should its stack be?

¢ Kernel, in privileged mode, has access to
process’s entire memory space

* Each process has a kernel stack
- SP moved here every time kernel takes control
* E.g.when interrupt handler is running

Kernel




Interrupt Handling in EGOS @

Interrupts generated by “intr” module in Earth (src/earth/intr.c)
Simulates interrupt controller

Kernel registers an interrupt handler that calls
proc_got interrupt() inprocess.cfor allinterrupts

Interrupts disabled (masked) by default in kernel mode

Interrupts only enabled:
When executing user-mode process
When waiting for 1/0 (even in kernel mode)

Masked interrupts will fire once interrupts re-enabled



A Special Kind of Interrupt

Other Types of Interrupts Timer Interrupts
/O Interrupts SRRy Ding! Time has elapsed!
Device has some in_p_LE_f?)r No pending task to do
you: What’s the point?
Page Fault Interrupts =8 Periodically returns control to
Process needs memory! the kernel, even for long-
System Calls running processes
Process wants you to do Kernel can switch to a different

something! process — pre-emption



Outline

Arrays and Stacks
Project 2 Overview

Interrupt Handling
Privilege Modes
Timer Interrupts

Scheduling with Quanta



Reasons for Scheduling

Why might control return to the kernel?

A timer interrupt occurred

Another kind of interrupt occurred (1/O, system call, etc)
Process is blocked waiting for an event
Process has terminated

Which of these requires the kernel to schedule a new process?



A Day in the Life

Disk A
User mode interrupt

read() syscall Timer
Kernel mode interrupt

\

Timer interrupt

System call routine Disk interrupt handler
handler



Quanta and Scheduling

* Quantum = arbitrary unit (of time)
* In a scheduler, quantum = maximum time a process can execute
* Round Robin with 10ms quantum:

10ms

A

Blocks and waits
A A

Time
Blocks and waits I/O finally ready




Quanta and Clock Interrupts

* Timer (clock) interrupts are how the OS measures time
 Scheduler’s quantum is a multiple of clock ticks
* Each timerinterrupt is a clock tick

cermece T B B B B

N = R e et

Kernel’s tick counter: 1 2 3 4 5




Round Robin’s Details

* Round Robin with 10ms quantum
* Timer interrupt (clock tick) every 2ms

Timer interrupts

10ms

/

Syscall

7

SyscaH/



On a Timer Interrupt

Increment clock tick
Determine if quantum is over

If not, interrupted process should resume running
Make scheduling decision

In Multi-Level Feedback Queue, what happens when a process
reaches the end of a quantum without blocking?



