
Project 2, Interrupts,
and Scheduling

CS 4411

Spring 2020

Announcements

• Office hours

• Regrades

• Piazza

Outline for Today
• Arrays and Stacks

• Project 2 Overview

• Interrupt Handling

• Privilege Modes

• Timer Interrupts

• Scheduling with Quanta

On P1: A Note About Stacks
• Standard process layout: Stack “grows

downward”

• What does this mean?

• push instruction:

• Decrements SP

• Stores register to memory at SP

• pop instruction:

• Reads memory at SP into register

• Increments SP

Stack

Heap

Code

Data

Kernel

0x00000000

0xFFFFFFFF

Virtual addresses

SP

push

pop

Compare to Arrays
• Arrays in C are contiguous memory

• Array index is really pointer addition

• Array variable is a pointer to first element

0
x
6
F
A
A
0
0

arr[o] arr[1] arr[2] arr[3]

0
x
6
F
A
A
0
4

0
x
6
F
A
A
0
8

0
x
6
F
A
A
0
C

0
x
6
F
A
A
1
0

arr + 3 * sizeof(int)

0x6FAA00

int[4] arr;

arr

Arrays vs. Stacks

0
x
6
F
A
A
0
0

arr[o] arr[1] arr[2] arr[3]

0
x
6
F
A
A
0
4

0
x
6
F
A
A
0
8

0
x
6
F
A
A
0
C

0
x
6
F
A
A
1
0

arr

Register 2 Register 1

sp

Register 3 Register 4

push

int[4] arr;

stack

malloc() Behavior
• malloc() is a natural fit for arrays: it returns a pointer to the

lowest memory address in the allocated region

• Is this what you want for a thread/process’s stack?
(Can you use arr as a stack pointer?)

int* arr = malloc(4 * sizeof(int));

0x6FAA00 arr

0x6FAA00 0x6FAA10

Outline
• Arrays and Stacks

• Project 2 Overview

• Interrupt Handling

• Privilege Modes

• Timer Interrupts

• Scheduling with Quanta

Project 2 Basics
• EGOS has a scheduler, but it’s not very good

• Round-robin algorithm

• FIFO run queue, timer interrupts force yield

• Replace scheduling logic with Multi-Level Feedback Queue

• Measure quality of new scheduler

• Each process’s completion time and number of yields

• Overall average CPU load

Project 2 Logistics
• One file to edit: src/grass/process.c

• When you make changes, keep the original code, and use a
macro to select whether new or old code is compiled:

#ifdef HW_MLFQ

 proc_next = mlfq_get_next(&run_queue, level);

#else

 proc_next = queue_get(&proc_runnable);

#endif

• If COMMONFLAGS in Makefile.common includes -DHW_MLFQ
your code will be used, otherwise original code will be used

Original (round-
robin) code

Your new code

Concepts in Project 2

• Interrupt handling

• Context switches (again)

• Process blocking and I/O

• Scheduling decisions and bookkeeping

Outline
• Arrays and Stacks

• Project 2 Overview

• Interrupt Handling

• Privilege Modes

• Timer Interrupts

• Scheduling with Quanta

Essentials of Interrupt Handling
• Hardware-assisted

• Interrupt Vector selects
where CPU jumps

• In a fixed, known
location, has an entry for
each type of interrupt

• Forced context switch

Interrupt
Controller

CPU

Devices

IV

Memory

Interrupt
Handler

Program
Signals

Interrupt

Privileges
• Interrupt handling is a privileged operation

• HW sets kernel-mode bit

• Interrupt handlers are part of kernel

• After interrupt handler runs, return control to user process

User process
User mode

Kernel mode

User process

Keyboard interrupt handler Disk interrupt handler

Memory Layout
• When interrupt happens, some other process

is running

• To switch to interrupt handler, kernel
memory must also be mapped in process’s
address space

• Otherwise, how would you get to interrupt
handler’s code?

Stack

Heap

Code

Data

Kernel

SP

PC

Memory Layout
• Interrupt handler is a program, needs a stack

• Where should its stack be?

• Kernel, in privileged mode, has access to
process’s entire memory space

• Each process has a kernel stack

• SP moved here every time kernel takes control

• E.g. when interrupt handler is running

Stack

Heap

Code

Data

Kernel

SP

PC

Kernel stack

Interrupt Handling in EGOS
• Interrupts generated by “intr” module in Earth (src/earth/intr.c)

• Simulates interrupt controller

• Kernel registers an interrupt handler that calls
proc_got_interrupt() in process.c for all interrupts

• Interrupts disabled (masked) by default in kernel mode

• Interrupts only enabled:

• When executing user-mode process

• When waiting for I/O (even in kernel mode)

• Masked interrupts will fire once interrupts re-enabled

A Special Kind of Interrupt
Other Types of Interrupts

• I/O Interrupts
• Device has some input for

you!

• Page Fault Interrupts
• Process needs memory!

• System Calls
• Process wants you to do

something!

Timer Interrupts

• Ding! Time has elapsed!

• No pending task to do

• What’s the point?

• Periodically returns control to
the kernel, even for long-
running processes

• Kernel can switch to a different
process – pre-emption

Outline
• Arrays and Stacks

• Project 2 Overview

• Interrupt Handling

• Privilege Modes

• Timer Interrupts

• Scheduling with Quanta

Reasons for Scheduling
• Why might control return to the kernel?

• A timer interrupt occurred

• Another kind of interrupt occurred (I/O, system call, etc)

• Process is blocked waiting for an event

• Process has terminated

• Which of these requires the kernel to schedule a new process?

A Day in the Life

User mode

Kernel mode

Process 1

Process 2

Process 1

P 2

read() syscall

Disk
interrupt

Timer
interrupt

Disk interrupt handler System call routine Timer interrupt
handler

Quanta and Scheduling
• Quantum = arbitrary unit (of time)

• In a scheduler, quantum = maximum time a process can execute

• Round Robin with 10ms quantum:

Process 1

Time

Process 2

P 3

P 1

Blocks and waits

10ms P 2

P 3

P 1

Blocks and waits

I/O finally ready

Quanta and Clock Interrupts
• Timer (clock) interrupts are how the OS measures time

• Scheduler’s quantum is a multiple of clock ticks

• Each timer interrupt is a clock tick

User mode

Kernel mode

P1 P1 P1 P1 P1

P2

Kernel’s tick counter: 1 2 3 4 5

Round Robin’s Details
• Round Robin with 10ms quantum

• Timer interrupt (clock tick) every 2ms

Process 1

Process 2

P 3

P 1

10ms P 2

P 3

P 1

Timer interrupts

Syscall

Syscall

On a Timer Interrupt
• Increment clock tick

• Determine if quantum is over

• If not, interrupted process should resume running

• Make scheduling decision

• In Multi-Level Feedback Queue, what happens when a process
reaches the end of a quantum without blocking?

