
Review: important OS concepts

• Time-sharing, context, context-switch

• Interprocess communication

• Exception control flow

• Priority and scheduling

• Cache and memory hierarchy (this lecture)

Cache & Memory Hierarchy

Recall our abstraction: CPU + memory

Address Content

#ffffffff 8bits

…

…

#00000002 8bits

#00000001 8bits

#00000000 8bits

CPU

Register1

Register2

(More registers)

CPU has a number of registers.

Memory is a two-column table.

Recall our abstraction: CPU + memory

Address Content

#ffffffff 8bits

…

…

#00000002 8bits

#00000001 8bits

#00000000 8bits

CPU

Register1

Register2

(More registers)

load instruction

store instruction

Load and store cost constant time.

Why cache in the middle?

Address Content

#ffffffff byte

…

…

#00000002 byte

#00000001 byte

#00000000 byte

CPU

Register1

Register2

(More registers)

Cache

Cache is faster than memory.

Memory has larger capacity
than cache.

Memory is cheaper than cache
in terms of $/byte.

What to learn about cache?

Address Content

#ffffffff 8bits

…

…

#00000002 8bits

#00000001 8bits

#00000000 8bits

CPU

Register1

Register2

(More registers)

What is the interface of a cache?

What is the structure of a cache?

Cache

Write-through and Write-back cache

Cache

• Write-through and write-back are two types of cache.

• You are going to implement both in P3.

• The general structure is a 3-column table.

Cache
Address Content In use?

Addr1 8bits Yes

???? ???? NO

…

a cache line or cache entry

Read in Write-back and Write-through

Address Content

#ffffffff 8bits

…

…

#00000002 8bits

#00000001 8bits

#00000000 8bits

CPU

Register1

Register2

(More registers)

Cache
Address Content In use? load read

content_t read(addr_t) {
// read local structure or
// read memory using load

}

Write in both Write-back and Write-through

Address Content

#ffffffff 8bits

…

…

#00000002 8bits

#00000001 8bits

#00000000 8bits

CPU

Register1

Register2

(More registers)

Cache
Address Content In use?

storewrite

void write(addr_t, content_t) {
// write local structure
// and maybe write memory
// using store

}

Sync (or flush) in Write-back cache

Address Content

#ffffffff 8bits

…

…

#00000002 8bits

#00000001 8bits

#00000000 8bits

CPU

Register1

Register2

(More registers)

Cache
Address Content In use?

storesync

void sync() {
// write memory using store
// content that is in cache
// but not yet in memory

}

Write-through and Write-back cache

Cache

• Write-through and write-back are two types of cache.

• You are going to implement both in P3.

• The general structure is a 3-column table.

• Write-through cache:

• read + write using load + store

• Write-back cache:

• read + write + sync using load + store

Cache
Address Content In use?

Addr1 8bits Yes

???? ???? NO

…

Question: what about dirty bit?
When is a dirty bit useful?

You may recall something called dirty bit that you learned in 3410.

Cache eviction

Cache

• When the cache is full and a new entry needs to be added, the cache
evicts an entry back to the memory.

• In write-through cache, the evicted cache entry does NOT need to be
stored back to memory.

• In write-back cache, the evicted cache entry, if dirty, needs to be stored
back to memory.

• In P3, you will implement the CLOCK algorithm for cache eviction which
will be taught in 4410 (Oct 27).

Cache & Memory Hierarchy

Memory Hierarchy

Cache

Picture source: https://link.springer.com/article/10.1007/s00778-019-00546-z

Price
($ per byte)

High

Low

https://link.springer.com/article/10.1007/s00778-019-00546-z

Example: internal of Intel i7 CPU

CPU cache hierarchy

L3 cache

L1 cache

L2 cache

CPU cache hierarchy

From Figure 6.39 of
Computer Systems

A Programmer’s Perspective

Registers

L1 cache

L2 cache

L3 cache

Main memory

Memory hierarchy performance and capacity

Cache level Access time Capacity

L1 4 cycles 32KB

L2 10 cycles 256KB

L3 40-75 cycles 8MB

Main memory 200 cycles 4-16GB

Disk >1M cycles >1TB

Take-aways

• Cache makes memory access faster, but cache has smaller capacity and is
more expensive.

• Different levels of cache form a memory hierarchy.

• CPU cache hosts KB and costs tens of CPU cycles

• Main memory hosts GB and costs hundreds of CPU cycles

• Disks hosts TB and costs millions of CPU cycles

Homework
• P3 is released today due on Nov 6. Implement write-back

and write-through cache with the CLOCK algorithm.

• Read page241 of the Intel’s IA-32 manual Volume2
(https://www.intel.com/content/dam/www/public/us/en/
documents/manuals/64-ia-32-architectures-software-
developer-instruction-set-reference-manual-325383.pdf)
about the CLFLUSH instruction.

Just for fun
• Main memory internal structure and row-hammer attack

What is inside here?

Just for fun
• Main memory internal structure and row-hammer attack

• Further reading: section 6.1 of Computer Systems A
Programmer’s Perspective.

