
Review
• First, operating systems solves time-sharing multi-tasking

• context = memory address space + stack pointer + instruction pointer

• IBM360 uses context-switch for time-sharing multi-tasking

• Second, operating systems solves interprocess communication (IPC)

• AT&T UNIX V provides message queue, shared memory and semaphore

• Third, operating systems handles exception control flow (today’s lecture).

Exception Control Flow (ECF)

Exception happens due to divide 0!

Exception happens due to Ctrl-C!

More examples of exception
Who initiates
exception?

Who handles
exception? Examples

CPU / Hardware Operating System Timer interrupt, I/O
interrupt

User Application Operating System Divide zero, Ctrl-C
interrupt, kill a process

User Application User Application Try-catch in C++ or
Java

Control flow is the sequence of
instructions executed by one CPU.

CPU executes instructions sequentially: I1, I2, I3, I4,

Normal control flow

 is the current CPU instruction, is the expected next CPU instructionIcurr Inext

* Image from CSAPP: Computer Systems A Programmer’s Perspective

General picture of exception control flow

Key of ECF: an event occurs between and !Icurr Inext

* Image from CSAPP: Computer Systems A Programmer’s Perspective

Who initiates exception?

Who handles exception?

Step1: CPU executes normally till Icurr

* Image from CSAPP: Computer Systems A Programmer’s Perspective

 is the current CPU instruction, is the expected next CPU instructionIcurr Inext

Step2: an exception is initiated at Icurr

* Image from CSAPP: Computer Systems A Programmer’s Perspective

 is the current CPU instruction, is the expected next CPU instructionIcurr Inext

Step3: exception is being handled

* Image from CSAPP: Computer Systems A Programmer’s Perspective

 is the current CPU instruction, is the expected next CPU instructionIcurr Inext

Step4: CPU (may) switch back to Inext

* Image from CSAPP: Computer Systems A Programmer’s Perspective

 is the current CPU instruction, is the expected next CPU instructionIcurr Inext

• Step1: CPU executes normally (normal control flow).

• Step2: An event occurs between and , the CPU control flow
transfers to an exception handler.

• Step3: Exception is being handled.

• Step4: CPU may switch control flow back to

Icurr Inext

Inext

General steps of exception control flow

Exception control flow enables
preemptive context-switch.

Who initiates
exception?

Who handles
exception? Examples

CPU / Hardware Operating System Timer interrupt

CPU executes thread #1

Who initiates
exception?

Who handles
exception? Examples

CPU / Hardware Operating System Timer interrupt

Thread #1

Timer hardware sends an interrupt to CPU

Who initiates
exception?

Who handles
exception? Examples

CPU / Hardware Operating System Timer interrupt

Thread #1

Timer event

OS can decide to do context-switch

Who initiates
exception?

Who handles
exception? Examples

CPU / Hardware Operating System Timer interrupt

Thread #1

Timer event
Decide to do a
context-switch.

OS switches context to thread #2

Who initiates
exception?

Who handles
exception? Examples

CPU / Hardware Operating System Timer interrupt

Thread #1

Thread #2

Timer event
Decide to do a
context-switch.

Switching
stack

pointer?

Switching
instruction

pointer?

Switching
memory
address
space?

Switching
kernel/user

mode?

4411 P1 User-level
Threads Yes No No No

Beyond
4411 P1

Kernel-level
Threads Yes Yes No Yes

Processes Yes Yes Yes Yes

The two “Yes” is due to exception control flow

Exception control flow enables
preemptive context-switch and also

system calls.

Exception also happens here! Surprise?

System calls also incur exception control flow

CPU executes thread #1 till Icurr

Who initiates
exception?

Who handles
exception? Examples

User Application Operating System System Call

Thread #1

 is a syscall instruction within printfIcurr

Thread #1
System call incurred

by printf

Who initiates
exception?

Who handles
exception? Examples

User Application Operating System System Call

OS helps thread #1 print on screen

Thread #1

Print a string
on the screen.

Who initiates
exception?

Who handles
exception? Examples

User Application Operating System System Call

System call incurred
by printf

Thread #1 continues to execute Inext

Thread #1

Thread #1

Print a string
on the screen.

Who initiates
exception?

Who handles
exception? Examples

User Application Operating System System Call

System call incurred
by printf

Exception control flow enables
preemptive context-switch, system calls
and also safe crash of user application.

Exception happens due to divide 0!

Who initiates
exception?

Who handles
exception? Examples

User Application Operating System Divide-zero

Thread #1

CPU executes thread #1 till Icurr

 is a divide-zero instructionIcurr

Thread #1
Thread1 executes a

divide-zero instruction.

Who initiates
exception?

Who handles
exception? Examples

User Application Operating System Divide-zero

OS terminates thread #1

Thread #1

OS terminates thread #1
and context-switch

Who initiates
exception?

Who handles
exception? Examples

User Application Operating System Divide-zero

Thread1 executes a
divide-zero instruction.

CPU executes some other thread

Thread #1

Thread #2

Who initiates
exception?

Who handles
exception? Examples

User Application Operating System Divide-zero

OS terminates thread #1
and context-switch

Thread1 executes a
divide-zero instruction.

Lesson: exception control flow enables
preemptive context-switch, system

calls and safe crash of user application.
These exceptions are handled by a handler function in the OS.

Question: how does the CPU know
the context of exception handler?

CPU is in the context of
an application program.

CPU is in the context of
OS’s exception handler.

CPU

Exception stack pointer

Exception instruction pointer

During initialization, OS record in
these registers the pointers to

the code & stack of its exception
handler function.

CPU has special registers for exception

CPU

Exception stack pointer

Exception instruction pointer

Transfer to exception handler

Stack pointer

Instruction pointer

replace

replace

Transfer to the exception handler
(the red arrow in left picture)
is done by the two “replace”

in the below picture.

exception type

instruction pointer
before exception

Exception handler stack

stack frame of
exception handler

stack pointer
before exception

Pushed to the stack by CPU

stack pointer when
executing Icurr

address of Icurr

Timer? System call?
Divide-zero?

Exception handler in EGOS

Summary
• Control flow is a sequence of instructions.

• An event can cause a CPU to switch from normal control flow to exception
control flow, which looks like the picture below.

• Exception control flow enables preemptive context-switch, system calls
and safe crash of user application.

• Exception control flow is made possible by both the OS exception handler
function and the related CPU registers.

Homework
• P1 is due on Oct 2.

• P2 will be released today and due on Oct 23. Implement
the concepts of preemptive context-switch and the
MLFQ scheduling algorithm (next lecture).

• Further reading: the concept of IRQ: https://
en.wikipedia.org/wiki/Interrupt_request_(PC_architecture)

