Review

* First, operating systems solves time-sharing multi-tasking
 context = memory address space + stack pointer + instruction pointer
 IBM360 uses context-switch for time-sharing multi-tasking

e Second, operating systems solves interprocess communication (IPC)
 AT&T UNIX V provides message queue, shared memory and semaphore

* Third, operating systems handles exception control flow (today’s lecture).

Exception Control Flow (ECF)

& e\

® ® tmp — yunhao@YunhaodeMacBook-Pro — -zsh — 67x18
~/tmp

[+ tmp cat tmp.c
#include <stdio.h>

int main() {

int a = 3 2;

o = i-
printf("%d / %d = %d\n", a, b, a/b);
o= -

printf("%d / %d = %d\n", a, b, a/b);

return 0;
3
-+ tmp gcc tmp.cC
- tmp ./a.out
8 / 2 =

[1] 24859 floating point exception ./a.out
tmp

egos-2020fa — make run2 — earthbox « make run2 — 67x18

make

BLOCK SERVER (layered block storage): pid=8

BFS: 4096 1nodes

BLOCK FILE SERVER (BFS): p1d=9

BFS: existing file system: 4096 FCBs

DIRECTORY SERVER: p1d=10

grass_main: initialization completed

INIT SERVER (1initializes file system, runs login process): pid=11
SYNC SERVER (periodically synchronizes file system caches): pid=12
PASSWORD SERVER: pid=13

login: yunhao
password:
Welcome to the EGOS operating system!
15% loop 30000000000
16: start looping
<ctrl>C
shell: process 16 terminated with status -3

15%

More examples of exception

Who initiates Who handles
exception? exception?

Examples

Timer interrupt, I/O

CPU / Hardware Operating System nterrupt

L . Divide zero, Ctrl-C
User Application Operating System nterrupt, kill a process
User Application User Application Try-catch in G-+ or

Java

Control flow is the sequence of
instructions executed by one CPU.

CPU executes instructions sequentially: /,, /5, /5,14,

Normal control flow

Application
program

’curr
lnext

/.. . is the current CPU instruction, / , . is the expected next CPU instruction

CUrr ext

* Image from CSAPP: Computer Systems A Programmer’s Perspective

General picture of exception control flow

Application Exception
program handler

Who handles exception?

Event b Exception
OCCUrS [-rrerremesee » ‘curr » .
i -y Exception
processing
: y
- age - 5 Exception
Who Initiates exception* retim

(optional)

Key of ECF: an event occurs between /., _and [, !

* Image from CSAPP: Computer Systems A Programmer’s Perspective

Step1: CPU executes normally till /

CUrr
Application Exception
program handler
Vo / Exception
OCCUIS rrovrerrsmemsnses » Curr > |
here hext Exception
‘\v processing
Exception
return
(optional)
4

/.. . is the current CPU instruction, / , . is the expected next CPU instruction

CUrr ext

* Image from CSAPP: Computer Systems A Programmer’s Perspective

/

Step2: an exception is initiated at

CUrr
Application Exception
program handler
Vo / Exception
OCCUIS rrovrerrsmemsnses » Curr |
here hext Exception
‘\v processing
Exception
return
(optional)
¥

/.. . is the current CPU instruction, / , . is the expected next CPU instruction

CUrr ext

* Image from CSAPP: Computer Systems A Programmer’s Perspective

Step3: exception is being handled

Application Exception
program handler
Vo / Exception
OCCUIS rrovrerrsmemsnses » Curr |
here hext Exception
processing
Exception
return
(optional)
Y

/.. . is the current CPU instruction, / , . is the expected next CPU instruction

CUrr ext

* Image from CSAPP: Computer Systems A Programmer’s Perspective

Step4: CPU (may) switch back to [,

Application Exception
program handler

ext

S | Exception
OCCUIS woererssmmmsnses » Curr |

processing

Exception
return
(optional)

/.. . is the current CPU instruction, / , . is the expected next CPU instruction

CUrr ext

* Image from CSAPP: Computer Systems A Programmer’s Perspective

General steps of exception control flow

e Step1: CPU executes normally (hormal control flow).

« Step2: An event occurs between /.. ._and / ., the CPU control flow

CUrr next’
transfers to an exception handler.

o Step3: Exception is being handled.

» Step4: CPU may switch control flow back to /

next

Exception control flow enables
preemptive context-switch.

Who initiates Who handles
Examples

exception? exception?

CPU / Hardware Operating System Timer interrupt

CPU executes thread #1

Application Exception
program handler
Thread #1
= / Exception
OCCUIS werrrrrmemeess » Ccurr > |
here hhext ¢ Exception
processing
. y
Exception
return
(optional)

Who initiates Who handles
Examples

exception? exception?

CPU / Hardware Operating System Timer interrupt

Timer hardware sends an interrupt to CPU

Application Exception
program handler
Thread #1
_ Event f Exception
Tlmer event OCCUIS wwrermrmemsnses » curr .
here fnayt (€~ Exception
processing
: Y
Exception
return
(optional)

Who initiates Who handles
exception? exception?

Examples

CPU / Hardware Operating System Timer interrupt

OS can decide to do context-switch

Application Exception
program handler
Thread #1
_ Event f Exception
Tlmer event OCCUIS wwrermrmemsnses » curr .

here hhext ¢ Exception Decide to do a
processing context-switch.

Exception

return
(optional)

Who initiates Who handles
Examples

exception? exception?

CPU / Hardware Operating System Timer interrupt

OS switches context to thread #2

Application Exception
program handler

Thread #1
_ Event f Exception
Tlmer event OCCUIS rroererrsssmenses » curr . -
here hext Exception Decide to do a
processing context-switch.
Exception
Thread #2 re(urn
(optional)

Who initiates Who handles
Examples

exception? exception?

CPU / Hardware Operating System Timer interrupt

The two “Yes” Is due to exception control flow

Switching g i ching
memory

kernel/user
address

pointer? pointer? mode?
space?

Switching Switching
stack Instruction

User-level

4411 P1
Threads

Yes No No No

Kernel-level

Threads Yes Yes No Yes

Beyond
4411 P1

Processes Yes Yes Yes Yes

Exception control flow enables
preemptive context-switch and also
system calls.

tmp — yunhao@YunhaodeMacBook-Pro — -zsh — 67x18
~[tmp
[+ tmp cat tmp.c
#1nclude <stdio.h>

int main() {

int a = 8, 2;

o = i
printf("%d / %d = %d\n", a, b, a/b);
b = 0;

printf("%d / %d = %d\n", a, b, a/b);

return 0;
3
<+ tmp gcc tmp.cC
> tmp ./a.out
A

[1] 24859 floating point exception ./a.out
tmp

CPU executes thread #1 till /

Application Exception
program handler
Thread #1
= / Exception
OCCUIS werrrrrmemeess » Ccurr > |
here hhext ¢ Exception
processing
. y
Exception
return
(optional)

Who initiates Who handles
Examples

exception? exception?

User Application Operating System System Call

[. is a syscall instruction within printf

CUrr
Application Exception
program handler
Thread #1
System call incurred Event / Exception
. OCCUIS werrrrrmemeess » Ccurr .
by printf hans Inext (¢~ Exception
processing
. y
Exception
return
(optional)

Who initiates Who handles
Examples

exception? exception?

User Application Operating System System Call

OS helps thread #1 print on screen

Application Exception
program handler
Thread #1
System call incurred Event / Exception
. OCCUrIS rroerersrmemenses » Ccurr .

by printf here hext (- Exception Print a string
processing on the screen.

Exception

return
(optional)

Who initiates Who handles
Examples

exception? exception?

User Application Operating System System Call

Thread #1 continues to execute /,

Application Exception
program handler

ext

Thread #1
System call incurred Event / Exception
. OCCUrIS rroerersrmemenses » Ccurr .
by printf here hext Exception Print a string
processing on the screen.
Exception
Thread #1 re{urn
(optional)

Who initiates Who handles
Examples

exception? exception?

User Application Operating System System Call

Exception control flow enables
preemptive context-switch, system calls
and also safe crash of user application.

& e\

® ® tmp — yunhao@YunhaodeMacBook-Pro — -zsh — 67x18
~/tmp

[+ tmp cat tmp.c
#include <stdio.h>

int main() {

int a = 3 2;

o = i-
printf("%d / %d = %d\n", a, b, a/b);
o= -

printf("%d / %d = %d\n", a, b, a/b);

return 0;
3
-+ tmp gcc tmp.cC
- tmp ./a.out
8 / 2 =

[1] 24859 floating point exception ./a.out
tmp

CPU executes thread #1 till /

Application Exception
program handler
Thread #1
= / Exception
OCCUIS werrrrrmemeess » Ccurr > |
here hhext ¢ Exception
processing
. y
Exception
return
(optional)

Who initiates Who handles
Examples

exception? exception?

User Application Operating System Divide-zero

[/ is a divide-zero instruction

Application Exception
program handler
Thread #1
Thread1 executes a Event / Exception
o]] OCCUrIS rroerersrmemenses » Ccurr .
divide-zero instruction. here Inext (¢~ Exception
processing
. y
Exception
return
(optional)

Who initiates Who handles
Examples

exception? exception?

User Application Operating System Divide-zero

OS terminates thread #1

Application Exception
program handler
Thread #1
Thread1 executes a Event / Exception
OCCUrIS rroerersrmemenses » Ccurr

divide-zero instruction. ", o fnext 4~ Exception OS terminates thread #1
processing and context-switch

Exception
return
(optional)

Who initiates Who handles
Examples

exception? exception?

User Application Operating System Divide-zero

CPU executes some other thread

Application Exception
program handler

Thread #1

Threadl executesa 'O S B Exception
divide-zero instruction. "~ hnext Exception OS terminates thread #1
processing and context-switch
Exception
Thread #2 return
(optional)

Who initiates Who handles
Examples

exception? exception?

User Application Operating System Divide-zero

Lesson: exception control flow enables
preemptive context-switch, system
calls and safe crash of user application.

These exceptions are handled by a handler function in the OS.

Question: how does the CPU know
the context of exception handler?

Application Exception
program handler
Event [
OCCUIS rrovrerrsmemrens £ ,currV Exceptlon » .
here hext ¢~ Exception
processing
y
.. Exception - .
CPU is in the context of ,e,fm CPU is in the context of

an application program. (optional) OS’s exception handler.

CPU has special registers for exception

CPU

| During initialization, OS record in
Exception these registers the pointers to
the code & stack of its exception

_ handler function.
Exception

Transfer to exception handler

Application Exception
program handler

Transfer to the exception handler
Exception

oceUrs et four -~ (the red arrow in left picture)
here next xcept:qn)
T]Pfocessmg IS done by the two “replace”

Exception

o In the below picture.
optiona

CPU

_ replace

_ replace
Exception o

Exception handler stack

Pushed to the stack by CPU

stack pointer
before exception

Instruction pointer
before exception

exception type

stack frame of
exception handler

stack pointer when

executing /. ..

address of /..,

Timer? System call?
Divide-zero?

Exception handler in EGOS

void proc_got_interrupt(){
(proc_current—>intr_type) {
INTR_PAGE_FAULT:
proc_pagefault((address_t) proc_current->intr_arg, true);

INTR SYSCALL:
proc_syscall():;

INTR _CLOCK:
proc_yield();

INTR IO:
proc_yield();

assert(0):

Summary

Control flow is a sequence of instructions.

An event can cause a CPU to switch from normal control flow to exception
control flow, which looks like the picture below.

Exception control flow enables preemptive context-switch, system calls
and safe crash of user application.

Exception control flow is made possible by both the OS exception handler
function and the related CPU registers.

Application Exception
program handler

Exception

here Inext Exceptiqn
processing

Exception
return
(optional)

Homework

e P1 is due on Oct 2.

* P2 will be released today and due on Oct 23. Implement
the concepts of preemptive context-switch and the
MLFQ scheduling algorithm (next lecture).

* Further reading: the concept of IRQ: https://
en.wikipedia.org/wiki/Interrupt_request_(PC_architecture)

