
Review

• Running a program requires the code & stack segments in memory.


• Context = memory address space + stack pointer + instruction pointer


• A CPU is in the context of a program if its instruction pointer and stack 
pointer registers point to the code & stack segments of the program.


• Context-switch means switching the context of a CPU to different 
programs by modifying its stack pointer and instruction pointer.



Big picture of context-switch

• The initial goal of operating systems is multi-tasking.


• A naive way of multi-tasking is batch processing.


• The concept of context-switch enables time-sharing multi-tasking.


• There are different implementations of context-switch: user-level 
threads, kernel-level threads, processes

* Images from https://about.sourcegraph.com/blog/the-ibm-system-360-the-first-modular-general-purpose-computer/



Implementation comparison
Switching 

stack 
pointer?

Switching 
instruction 

pointer?

Switching 
memory 
address 
space?

Switching 
kernel/user 

mode?

4411 P1 User-level 
Threads Yes No No No

Beyond 
4411 P1

Kernel-level 
Threads Yes Yes No Yes

Processes Yes Yes Yes Yes



Switching 
stack 

pointer?

Switching 
instruction 

pointer?

Switching 
memory 
address 
space?

Switching 
kernel/user 

mode?

4411 P1 User-level 
Threads Yes No No No

Beyond 
4411 P1

Kernel-level 
Threads Yes Yes No Yes

Processes Yes Yes Yes Yes

Implementation comparison



Switching 
stack 

pointer?

Switching 
instruction 

pointer?

Switching 
memory 
address 
space?

Switching 
kernel/user 

mode?

4411 P1 User-level 
Threads Yes No No No

Beyond 
4411 P1

Kernel-level 
Threads Yes Yes No Yes

Processes Yes Yes Yes Yes

Implementation comparison



Switching 
stack 

pointer?

Switching 
instruction 

pointer?

Switching 
memory 
address 
space?

Switching 
kernel/user 

mode?

4411 P1 User-level 
Threads Yes No No No

Beyond 
4411 P1

Kernel-level 
Threads Yes Yes No Yes

Processes Yes Yes Yes Yes

Implementation comparison



Context-switch solves the problem 
of time-sharing multi-tasking.

Processes and threads implement the concept of context-switch.



Context-switch solves the problem 
of time-sharing multi-tasking.

Next problem: how do different 
processes/threads communicate?

Processes and threads implement the concept of context-switch.



Next problem: how do different 
processes/threads communicate?
• For example, say there are 3 threads running my zoom together: one for 

user interface, one for microphone and one for camera.


• When I click the “mute” button, the user interface thread should tell the 
microphone thread to stop recording.


• The camera thread should continuously transfer video data to the user 
interface thread.



Interprocess communication (IPC)

• The terminology of this problem is IPC which is extensively studied in the 
operating systems literature. Performance is the key!


• If IPC has poor performance, the camera thread cannot transfer video 
data to the user interface thread in time, leading to poor experience.


• Note: we will use the general term IPC to represent both communications 
among processes and communications among threads.



Historical representatives

• IBM 360 is a representative of time-sharing 
multi-tasking with context-switch.


• 1960s

• AT&T UNIX System V is a representative of 
interprocess communication (IPC).


• 1980s



UNIX System V IPC

System V IPC is the name given to three interprocess 
communication mechanisms that are widely available on 
UNIX systems: message queues, semaphore, and shared 
memory.

https://man7.org/linux/man-pages/man7/svipc.7.html

what you need to implement in 4411 P1



Message queue example

User interface thread in zoom Microphone thread in zoom

User-level

Kernel-level

Operating Systems Kernel



User interface thread in zoom Microphone thread in zoom

User-level

Kernel-level System call: 
I want a message queue!

Message queue example

Operating Systems Kernel



User interface thread in zoom Microphone thread in zoom

User-level

Kernel-level System call: 
I want a message queue!

Alright!

message queue

Message queue example

Operating Systems Kernel



User interface thread in zoom Microphone thread in zoom

User-level

Kernel-level

System call: 
Please send a “mute” message 

 to the Microphone thread

message queue

Message queue example

Operating Systems Kernel



User interface thread in zoom Microphone thread in zoom

User-level

Kernel-level

System call: 
Please send a “mute” message 

 to the Microphone thread

message queue

Message queue example

Alright!

Operating Systems Kernel



User interface thread in zoom Microphone thread in zoom

User-level

Kernel-level

System call: 
Please send a “mute” message 

 to the Microphone thread

message queue

Message queue example

Alright!

OK, I’ll stop recording

Operating Systems Kernel



User interface thread in zoom Camera thread in zoom

User-level

Kernel-level

Shared memory example

System call: 
I want to share a piece of memory 

with the camera thread!
Operating Systems Kernel



User interface thread in zoom Camera thread in zoom

User-level

Kernel-level

Shared memory example

System call: 
I want to share a piece of memory 

with the camera thread!

shared memory

Alright!

Operating Systems Kernel



User interface thread in zoom Camera thread in zoom

User-level

Kernel-level

Shared memory example

shared memory

Write video data to the  
shared memory

Operating Systems Kernel



User interface thread in zoom Camera thread in zoom

User-level

Kernel-level

Operating Systems Kernel

Shared memory example

shared memory

Write video data to the  
shared memory

Read video data from  
the shared memory and  

render it on screen



User interface thread in zoom Camera thread in zoom

User-level

Kernel-level

Operating Systems Kernel

Shared memory example

shared memory

Write video data to the  
shared memory

No need to go through the  
kernel for this communication!

Read video data from  
the shared memory and  

render it on screen



Lesson: shared memory has better 
performance than message queues because 

communications get around the kernel.



The third IPC mechanism: semaphores

System V IPC is the name given to three interprocess 
communication mechanisms that are widely available on 
UNIX systems: message queues, semaphore, and shared 
memory.

https://man7.org/linux/man-pages/man7/svipc.7.html

what you need to implement in 4411 P1

✅ ✅



The producer-consumer problem

• There are two types of threads (or processes): producer and consumer.


• Producer produces some kind of resources (e.g., HTTP web request) 
and consumer consume the resources (e.g., process the request).


• Goal: consumer should only be scheduled when some resource produced 
by the producer is available (i.e., has not been consumed).


• The core of semaphore is a counter of such available resources. If counter 
is greater than 0, a consumer thread will be scheduled.



Producer thread Consumer thread

User-level

Kernel-level

Operating Systems Kernel

Producer-consumer example

System call: 
I want to share a semaphore 
with the consumer thread! 

Counter initialized to 0.



Producer thread Consumer thread

User-level

Kernel-level

Operating Systems Kernel

counter = 0
Alright!System call: 

I want to share a semaphore 
with the consumer thread! 

Counter initialized to 0.

Producer-consumer example



Producer thread Consumer thread

User-level

Kernel-level

Operating Systems Kernel

counter = 0 System call: 
I want to consume a resource 
please decrement the counter

Producer-consumer example



Producer thread

Consumer  
thread

User-level

Kernel-level

Operating Systems Kernel

counter = 0

Producer-consumer example

No resource available,  
suspend the thread  
until further notice



Producer threads

User-level

Kernel-level

Operating Systems Kernel

counter = 0

System call: 
I have produced a resource and 
please increment the counter.

Producer-consumer example

Consumer  
thread (suspended)



Producer threads

User-level

Kernel-level

Operating Systems Kernel

counter = 1

System call: 
I have produced a resource and 
please increment the counter.

Alright!

Producer-consumer example

Consumer  
thread (suspended)



Producer threads

User-level

Kernel-level

Operating Systems Kernel

counter = 1

Producer-consumer example

Consumer  
thread

Resource is now 
available.



Producer threads

User-level

Kernel-level

Operating Systems Kernel

counter = 0

Producer-consumer example

Consumer thread

Decrement counter. Put the thread back to the 
runnable queue.



Variants of producer-consumer

• There can be multiple producer threads and consumer threads.


• Bounded buffer: a producer can only produce if the number of available 
resources (the value of the counter) is not greater to a given number.


• …



Semaphores in P1
struct sema {
    // counter
    // queue of threads that are put to sleep
    // feel free to add other fields that you need
};

// initialize a semaphore
void sema_init(struct sema *sema, unsigned int count)

// produce a resource by incrementing the semaphore
void sema_inc(struct sema *sema)

// consume a resource by decrementing the semaphore
void sema_dec(struct sema *sema)



Lesson: semaphore is easy to 
implement, but it is not very useful and 

one should try to avoid using it.

Refer to “12 Commandments of Synchronization” by Emin Gün Sirer



Homework
• P1: implement semaphores and test your semaphore with 

producer-consumer and other synchronization problems. 


• Read the Linux manual of System V IPC: https://
man7.org/linux/man-pages/man7/svipc.7.html


• Next lecture: introduce the concepts of timer interrupt 
and scheduling for P2.



Concepts in the real-world (Unix/Linux)

• User-level threads


• getcontext, setcontext, …

• Kernel-level threads


• pthread_create, pthread_join, …

• Processes


• fork, …



• Message queues


• msgget, msgsnd, msgrcv, …

• Semaphores


• semget, semop, …

• Shared memory


• shmget, shmdt, …

Concepts in the real-world (Unix/Linux)


