
Context-switch & Threads

Goal of Today’s Class

• Understand the concepts of context, context-switch and threads

• Understand the related functions in assignment P1

• thread_init, thread_create, thread_yield, thread_exit

• ctx_entry, ctx_start, ctx_switch

Review: the minimal requirement of
program execution is code & stack

segments in memory address space.

Assume 2 programs in memory
stack end …

… …
stack start …

… …
code end …

… …
code start …

… …
stack end …

… …
stack start …

… …
code end …

… …
code start …

program#1 stack

program#1 code

program#2 stack

program#2 code

OS puts the code & stack of both
programs in the memory so that
they can take turns to execute.

Review: context defines which program the
CPU is executing; context = memory address

space + stack pointer + instruction pointer

CPU in the context of program #1
program #1 stack end …

… …
program #1 stack start …

… …
program #1 code end …

… …
program #1 code start …

… …
program #2 stack end …

… …
program #2 stack start …

… …
program #2 code end …

… …
program #2 code start …

CPU

Stack pointer register

Instruction pointer register

CPU in the context of program #2

CPU

Stack pointer register

Instruction pointer register

program #1 stack end …
… …

program #1 stack start …
… …

program #1 code end …
… …

program #1 code start …
… …

program #2 stack end …
… …

program #2 stack start …
… …

program #2 code end …
… …

program #2 code start …

Context-switch
CPU switches to the context of program #2

Context-switch

CPU switches to the context of program #1

Question: when does context-
switch happen?

When does context-switch happen?

• Program terminates.

• Program calls yield system call. (next slide)

• CPU receives a timer interrupt. (later in assignment P2)

• CPU receives an I/O interrupt. (later in assignment P5)

yield is a noble behavior

A car can occupy the road, but it decides
to stop and let others to use the road first.

int noble_a() {
 ……
 yield();
 ……
}

A program can occupy the CPU, but it decides
to stop and let others to use the CPU first.

Two noble functions
int noble_a() {
 printf(“Noble A does some work”);
 ……
 yield();
 printf(“Noble A works some more”);
 ……
}

int noble_b() {
 printf(“Noble B does some work”);
 ……
 yield();
 printf(“Noble B works some more”);
 ……
}

One possible schedule
int noble_a() {
 printf(“Noble A does some work”);
 ……
 yield();
 printf(“Noble A works some more”);
 ……
}

int noble_b() {
 printf(“Noble B does some work”);
 ……
 yield();
 printf(“Noble B works some more”);
 ……
}

1

2

3

4

5 6

Output:
Noble A does some work
Noble B does some work
Noble A works some more
Noble B works some more

Another possible schedule
int noble_a() {
 printf(“Noble A does some work”);
 ……
 yield();
 printf(“Noble A works some more”);
 ……
}

int noble_b() {
 printf(“Noble B does some work”);
 ……
 yield();
 printf(“Noble B works some more”);
 ……
}

3

4

1

2

6 5

Output:
Noble B does some work
Noble A does some work
Noble B works some more
Noble A works some more

Question: how do we run two
functions at the same time?

Let’s review some knowledge of stack.

…

Review of stack
int noble_a() {
 printf(“Noble A does some work”);
 ……
 yield();
 printf(“Noble A works some more”);
 ……
}

int main() {
 noble_a();
 return 0;
}

stack frame of main

stack frame of noble_a

stack frame of yield

main() calls noble_a() calls yield()

stack

Review of stack

main() calls noble_a() calls yield()

Currently running function

Only continue when yield returns

Only continue when noble_a returns For a single stack, there is
only one currently running
function, so that noble_a
and noble_b cannot run in
the same stack at the same
time.

…

stack frame of main

stack frame of noble_a

stack frame of yield

stack frame of noble_b

Two stacks for two nobles
…

stack frame of noble_a

…

Both are currently running functions!

How does yield do context-switch
between the two nobles?

Noble A does some work
int noble_a() {
 printf(“Noble A does some work”);
 ……
 yield();
 printf(“Noble A works some more”);
 ……
}

int noble_b() {
 printf(“Noble B does some work”);
 ……
 yield();
 printf(“Noble B works some more”);
 ……
}

1

Output:
Noble A does some work

CPU in context of noble_a
…

stack frame of noble_a

…

CPU

Stack pointer

Instruction

code of
noble_a

code of
yield

code of
noble_b

Noble A yields
int noble_a() {
 printf(“Noble A does some work”);
 ……
 yield();
 printf(“Noble A works some more”);
 ……
}

int noble_b() {
 printf(“Noble B does some work”);
 ……
 yield();
 printf(“Noble B works some more”);
 ……
}

1

Output:
Noble A does some work

2

stack frame of yield

noble_a calls yield
…

stack frame of noble_a

…

CPU

Stack pointer

Instruction

code of
noble_a

code of
yield

code of
noble_b

stack frame of noble_b

yield switches context to noble_b
…

CPU

Stack pointer

Instruction

code of
noble_a

code of
yield

code of
noble_b

stack frame of yield

…

stack frame of noble_a

Noble B does some work
int noble_a() {
 printf(“Noble A does some work”);
 ……
 yield();
 printf(“Noble A works some more”);
 ……
}

int noble_b() {
 printf(“Noble B does some work”);
 ……
 yield();
 printf(“Noble B works some more”);
 ……
}

1

Output:
Noble A does some work
Noble B does some work

2

3

Noble B yields
int noble_a() {
 printf(“Noble A does some work”);
 ……
 yield();
 printf(“Noble A works some more”);
 ……
}

int noble_b() {
 printf(“Noble B does some work”);
 ……
 yield();
 printf(“Noble B works some more”);
 ……
}

1

Output:
Noble A does some work
Noble B does some work

2

3

4

stack frame of yield

stack frame of noble_b

noble_b calls yield
…

CPU

Stack pointer

Instruction

code of
noble_a

code of
yield

code of
noble_b

stack frame of yield

…

stack frame of noble_a

stack frame of yield

stack frame of noble_b

yield switches context to noble_a
…

CPU

Stack pointer

Instruction

code of
noble_a

code of
yield

code of
noble_b

stack frame of yield

…

stack frame of noble_a

stack frame of yield

stack frame of noble_b

yield returns to noble_a
…

CPU

Stack pointer

Instruction

code of
noble_a

code of
yield

code of
noble_b

…

stack frame of noble_a

Noble A works some more
int noble_a() {
 printf(“Noble A does some work”);
 ……
 yield();
 printf(“Noble A works some more”);
 ……
}

int noble_b() {
 printf(“Noble B does some work”);
 ……
 yield();
 printf(“Noble B works some more”);
 ……
}

1

Output:
Noble A does some work
Noble B does some work
Noble A works some more

2

3

4

5

stack frame of yield

stack frame of noble_b

noble_a terminates (implicit yield)
…

CPU

Stack pointer

Instruction

code of
noble_a

code of
yield

code of
noble_b

…

stack frame of yield

stack frame of noble_b

yield switches context to noble_b
…

CPU

Stack pointer

Instruction

code of
noble_a

code of
yield

code of
noble_b

…

stack frame of noble_b

yield returns to noble_b
…

CPU

Stack pointer

Instruction

code of
noble_a

code of
yield

code of
noble_b

…

Noble B works some more
int noble_a() {
 printf(“Noble A does some work”);
 ……
 yield();
 printf(“Noble A works some more”);
 ……
}

int noble_b() {
 printf(“Noble B does some work”);
 ……
 yield();
 printf(“Noble B works some more”);
 ……
}

1

2

3

4

5 6

Output:
Noble A does some work
Noble B does some work
Noble A works some more
Noble B works some more

How does yield do context-switch?

• The answer is simple: change the stack pointer!

• when switching from noble_a to noble_b, the yield function needs to
record the stack pointer of noble_a

• when switching back to noble_a, the yield function restores the stack
pointer of noble_a

Context-switch from noble_b to noble_a

Recall: when does context-switch happen?

• Program terminates.

• Program calls yield system call.

• CPU receives a timer interrupt. (later in assignment P2)

• CPU receives an I/O interrupt. (later in assignment P5)

✅

✅

Lesson: A thread owns a stack running
a given function.

stack of noble_b thread

code

stack of main thread

A thread owns a stack running a given function

int main() {
 thread_create(noble_b);
 noble_a();
 return 0;
}

int noble_a() {
 ……
}

int noble_b() {
 ……
}

code of
noble_a

code of
yield

code of
noble_b

stack of noble_b thread

code

stack of main thread

Context-switch between threads
int main() {
 thread_create(noble_b);
 noble_a();
 return 0;
}

int noble_a() {
 ……
}

int noble_b() {
 ……
}

code of
noble_a

code of
yield

code of
noble_b

CPU

Stack pointer

Instruction

stack of noble_b thread

code

stack of main thread

Context-switch between threads
int main() {
 thread_create(noble_b);
 noble_a();
 return 0;
}

int noble_a() {
 ……
}

int noble_b() {
 ……
}

code of
noble_a

code of
yield

code of
noble_b

CPU

Stack pointer

Instruction

• Understand the concepts of context, context-switch and threads

• Understand the related functions in assignment P1

• thread_init, thread_create, thread_yield, thread_exit

• ctx_entry, ctx_start, ctx_switch

Goal of Today’s Class

✅

data
code

stack of main thread

thread_init
struct thread {
 // stored stack pointer for yield
 // *func to call
 // *arg to the function
 // …… feel free to add new fields
};
struct thread current_thread;
struct queue_t runnable_threads;

int main() {
 // initialize the two global variables
 thread_init();
 return 0;
}

code of
noble_a

code of
yield

code of
noble_b

They live here so
shared by threads.

data
code

stack of main thread

thread_create
struct thread current_thread;
struct queue_t runnable_threads;

void noble_b(void* arg) {
 ……
}

int main() {
 // initialize the two global variables
 thread_init();
 // create a thread by modifying
 // the global variables
 thread_create(noble_b, NULL, 16 * 1024);
 return 0;
}

code of
noble_a

code of
yield

code of
noble_b

stack of noble_b thread

data
code

stack of main thread

thread_create
struct thread current_thread;
struct queue_t runnable_threads;
……

void thread_create(void (*f)(void *),
 void *arg,
 unsigned int stack_size){
 // allocate a stack for noble_b
 // modify global variables
 // call ctx_start to run function f
 // ctx_start is defined in /src/lib/*.s
}

……

code of
noble_a

code of
yield

code of
noble_b

stack of noble_b thread

data
code

stack of main thread

thread_yield
struct thread current_thread;
struct queue_t runnable_threads;
……

void thread_yield(){
 // choose next thread to run
 // call ctx_switch to run the next thread
 // ctx_switch requires previously stored
 // stack pointers
 // ctx_switch is defined in /src/lib/*.s
}

……
code of
noble_a

code of
yield

code of
noble_b

• Understand the concepts of context, context-switch and threads

• Understand the related functions in assignment P1

• thread_init, thread_create, thread_yield, thread_exit

• ctx_entry, ctx_start, ctx_switch

• It’s your job to explore the details of how to implement and use these
functions. ;-) Try to understand yourself before coming to office hours.

Goal of Today’s Class

✅

✅

Homework
• P1 is due on Oct 2. Start early.

• Implement the concepts of thread, context-switch and
synchronization of threads (next lecture).

