Memory & C Pointers

Yunhao Zhang
Cornell University

What is memory?

cooling fan CPU under the cooling fan

-

<%

* Images from https:// www.123rf.com/

What is memory?

_\\
~

= \
AN o
. elSR

A AN SOSS SRS

Circuits connecting
CPU and memory

¥ - A ; _ - :
pecar) =N
N s
.‘

SNORL

"
PR ™)

"N N N

* Images from https:// www.123rf.com/

What is memory?

CPU under here

memory under here

cooling fan

batteries

e — o ——
o EIE P 114 5)4

* Images from https://www.computerrepairsoftware.com/macbook-pro-2018-teardown-more-than-just-a-new-keyboard/

Memory size

Size in 2™n Address space

2A10 bytes #0, #1, ..., #2710-1
2A21 bytes #0, #1, ..., #2/21-1

2"\33 bytes #0, #1, ..., #2°33-1

* Memory contains bytes and each byte Is 8 bits.

¢ 2M0is 1KB; 27220 is 1MB; 2730 is 1GB

OS controls CPU and memory

* We have seen how CPU and memory exist in the real-world.

* Those circuits are fun to see, but operating systems do NOT
need to know the circuit details (CS3410 deals with that)!

* The power of abstraction:

* represent memory with a simple math model.

Abstraction

Art In 19th century Artin 20th century Memory hardware Abstract math model

2An-1 8bits

Pierre Franc Lamy (1855-1919) 85" Ty _
Young girl on a balcony y \ %
‘0 ' -3 T| y
8 - ‘ . - - " 4
}‘ \'. * .

..

I nnnnnmm...

..

..

..

Carlo Carra (1912)
Concurrency,VWoman on a balcony

MEU25664D6BC2EP-30R

i 601682 / 20037725
I nmm

£

S 26BPC2500USE Swissbit®

* Images from Wikipedia and Lorenzo’s slides: https://www.cs.cornell.edu/courses/cs5414/2017fa/notes/week12.pdf

https://www.cs.cornell.edu/courses/cs5414/2017fa/notes/week12.pdf
https://www.cs.cornell.edu/courses/cs5414/2017fa/notes/week12.pdf

Memory address space

* nis usually 32 or 64 meaning that the first
column of the math model requires 4 bytes or 2'n-1 | 8bits
8 bytes to represent.

..

 Example of modifying a single byte in memory:

..

// address 1s usually represented
// 1in hexadecimal
char* loc = (char*) 0x1234abcd; 41 é Sbits
*loc = 0x89; —,—
// putting byte 0x89 to address @x1234abcd #0 8bits

Pointer

char* loc = (char*) 0x1234abcd; = | L
*loc = 0x389; 5
// putting 0x89 to address 0x1234abcd Ox 1234abcd 0x 89
» We call Loc a pointer. position ofloc +3 ~ 0x 12
positionofloc+2 @ 0x34
e Compiler decides the position of Loc. s ——
positionofloc+1 @ Oxab
e Loc occupies 4 bytes of memory (i.e., n=32) positionofloc ~ Ox cd
and stores an address. |

Pointer and lTypes

sizeof(Type) sizeof(Type)
(n = 32) (n = 64)

Type sizeof(Type) Type

char char* 4 8
int int* 4 38
long long long long* 4 38

float float* 4 8

(o [0]0] 0] [double* 4 8

Pointer and Array

char* loc = (char*) 0x1234abcd;
loc[0] = 0x89;

// same as *loc = 0x89
loc[1l] = Ox12;

// same as *(loc + 1)
loc[2] = Oxaa;

// same as *(loc + 2)

Ox12

Oxaa

Ox 1234abcf Ox aa

Ox 1234abce Ox 12
Ox 1234abcd Ox 89
position of loc + 3 Ox 12
position of loc + 2 Ox 34
position of loc + 1 Ox ab

Operating system vs. User application

1nt main() {
char* loc = (char*) 0x1234abcd;

loc[0] = 0x89;
loc[1l] = Ox12;
loc[2] = Oxaa;
return 0;

L

* This function can work well as operating systems code.

* But it crashes if you write a user application like this.

Operating system vs. User application

 CPU has privileged mode and unprivileged mode (specified by a CPU internal
register).

 Operating systems run in the privileged mode.
» User applications run in the unprivileged mode.
* |n privileged mode, code is free to access all memory addresses.

* |n unprivileged mode, code can only access memory addresses that operating
systems have allowed.

OS controls Application memory access

application stack end . , ,
... ~1 OS allows user applications to access this
S S— region holding local variables in functions.
application stack start

"""] OS allows user applications to access this
— J region holding the binary executable code.

Ox 1234abcd OS disallows user application to access!

Operating system vs. User application

application stack end

- int main() {

application stack start ... — char* loc = (char*) 0x1234abcd;
--- o allowedt 4 oc[0] = 0x89;

loc[1l] = Ox12;

loc[2] = Oxaa;

return 0;

0x1234abcd .. 7 disallowed!

OS controls Application memory access

e \We will discuss the control mechanisms later this semester.
* For now, the take-aways are simple

* OS controls which memory regions in the address space
that applications are allowed to access.

* You used to implement malloc in CS3410. malloc is a

mechanism that application can request access to a piece
of memory dynamically from the operating system.

Request memory dynamically from OS

application stack end
"" int main(Q) {

application stack start| .. // char* loc = (char*) 0x1234abcd;

--- e char* loc = (char*) mallOCCBD;

loc[0] = 0x89;

_ positonofloc+1 tocll] = 0x1z;

____________________ position of loc ... toclel = @xda;

T B return 0;

______ application codeend .. 4

T The code now works!

Homework

* We will release the first project PO today. PO is due next
Friday (Sep 11).

* Implement a queue data structure and the related operations
* create/free a queue
* append/dequeue elements to the queue

* Please read the instructions carefully before asking questions
on Plazza.

