
Memory & C Pointers

Yunhao Zhang

Cornell University

What is memory?
CPU under the cooling fan

Memory
* Images from https://www.123rf.com/

cooling fan

What is memory?

Circuits connecting
CPU and memory

* Images from https://www.123rf.com/

What is memory?

* Images from https://www.computerrepairsoftware.com/macbook-pro-2018-teardown-more-than-just-a-new-keyboard/

CPU under here
cooling fan

memory under here

batteries

Memory size
Size Size in 2^n Address space

1KB 2^10 bytes #0, #1, …, #2^10-1

2MB 2^21 bytes #0, #1, …, #2^21-1

8GB 2^33 bytes #0, #1, …, #2^33-1

• Memory contains bytes and each byte is 8 bits.

• 2^10 is 1KB; 2^20 is 1MB; 2^30 is 1GB

OS controls CPU and memory
• We have seen how CPU and memory exist in the real-world.

• Those circuits are fun to see, but operating systems do NOT
need to know the circuit details (CS3410 deals with that)!

• The power of abstraction:

• represent memory with a simple math model.

Abstraction

2^n -1 8bits

…

…

#2 8bits

#1 8bits

#0 8bits

Memory hardware Abstract math modelArt in 19th century Art in 20th century

* Images from Wikipedia and Lorenzo’s slides: https://www.cs.cornell.edu/courses/cs5414/2017fa/notes/week12.pdf

https://www.cs.cornell.edu/courses/cs5414/2017fa/notes/week12.pdf
https://www.cs.cornell.edu/courses/cs5414/2017fa/notes/week12.pdf

Memory address space
• n is usually 32 or 64 meaning that the first

column of the math model requires 4 bytes or
8 bytes to represent.

• Example of modifying a single byte in memory:

2^n -1 8bits

…

…

#2 8bits

#1 8bits

#0 8bits

// address is usually represented
// in hexadecimal
char* loc = (char*) 0x1234abcd;
*loc = 0x89;
// putting byte 0x89 to address 0x1234abcd

char* loc = (char*) 0x1234abcd;
*loc = 0x89;
// putting 0x89 to address 0x1234abcd

Pointer
2^n -1 …

… …

0x 1234abcd 0x 89

… …

position of loc + 3 0x 12

position of loc + 2 0x 34

position of loc + 1 0x ab

position of loc 0x cd

… …

• We call loc a pointer.

• Compiler decides the position of loc.

• loc occupies 4 bytes of memory (i.e., n=32)
and stores an address.

Pointer and Types
Type sizeof(Type)

char 1

int 4

long long 8

float 4

double 8

Type sizeof(Type)
(n = 32)

sizeof(Type)
(n = 64)

char* 4 8

int* 4 8

long long* 4 8

float* 4 8

double* 4 8

char* loc = (char*) 0x1234abcd;
loc[0] = 0x89;
// same as *loc = 0x89
loc[1] = 0x12;
// same as *(loc + 1) = 0x12
loc[2] = 0xaa;
// same as *(loc + 2) = 0xaa

Pointer and Array
… …

0x 1234abcf 0x aa

0x 1234abce 0x 12

0x 1234abcd 0x 89

… …

position of loc + 3 0x 12

position of loc + 2 0x 34

position of loc + 1 0x ab

position of loc 0x cd

… …

int main() {
char* loc = (char*) 0x1234abcd;
loc[0] = 0x89;
loc[1] = 0x12;
loc[2] = 0xaa;

return 0;
}

Operating system vs. User application

• This function can work well as operating systems code.

• But it crashes if you write a user application like this.

Operating system vs. User application

• CPU has privileged mode and unprivileged mode (specified by a CPU internal
register).

• Operating systems run in the privileged mode.

• User applications run in the unprivileged mode.

• In privileged mode, code is free to access all memory addresses.

• In unprivileged mode, code can only access memory addresses that operating
systems have allowed.

OS controls Application memory access
… …

application stack end …

… …

application stack start …

… …

… …

application code end …

… …

application code start …

… …

0x 1234abcd …

… …

OS allows user applications to access this
region holding local variables in functions.

OS allows user applications to access this
region holding the binary executable code.

OS disallows user application to access!

int main() {
char* loc = (char*) 0x1234abcd;
loc[0] = 0x89;
loc[1] = 0x12;
loc[2] = 0xaa;

return 0;
}

Operating system vs. User application
… …

application stack end …

position of loc …

application stack start …

… …

… …

application code end …

… …

application code start …

… …

0x 1234abcd …

… …

allowed!

disallowed!

OS controls Application memory access

• We will discuss the control mechanisms later this semester.

• For now, the take-aways are simple

• OS controls which memory regions in the address space
that applications are allowed to access.

• You used to implement malloc in CS3410. malloc is a
mechanism that application can request access to a piece
of memory dynamically from the operating system.

int main() {
// char* loc = (char*) 0x1234abcd;
char* loc = (char*) malloc(3);
loc[0] = 0x89;
loc[1] = 0x12;
loc[2] = 0xaa;

return 0;
}

Request memory dynamically from OS
… …

application stack end …
… …

application stack start …
… …

position of loc + 2 …
position of loc + 1

position of loc …
… …

application code end …
… …

application code start …
… …

The code now works!

Homework
• We will release the first project P0 today. P0 is due next

Friday (Sep 11).

• Implement a queue data structure and the related operations

• create/free a queue

• append/dequeue elements to the queue

• Please read the instructions carefully before asking questions
on Piazza.

